
LCM LCR LCG LCW I CX STM STR2 UCA2 ULK* JSK/M2 JSG JSC3 · JSC4 USSD **UFCD** USC UB JSB3 LMB I MI **HCM** HCA LBC CAC4 UCAC2 CAC-N UCAC-N RCS2 RCC2 PCC SHC MCP GLC MFC

MFC BBS RRC GRC RV3** NHS HRL LN 卡瓜 卡瓜 卡瓜 卡瓜 卡瓜 卡型 整理 FJ FK 速度 整理

选型方法

请按照以下步骤进行选型。

Step1 摆动时间的确认

摆动时间设定为规格范围外时,气缸的动作会变得不稳定,可能会导致气缸损坏。请务必在规格的摆动时间调整范围内使用。

	90°使用时	180°使用时			
摆动时间(s)	0.2~1.5	0.4~3.0			

Step2 大小(扭矩)的选定

根据负荷的种类,主要分为三大类。

请根据各种情况计算所需扭矩。复合负荷时,请将各扭矩合 计作为所需扭矩。

请根据使用压力,在理论扭矩表及实效扭矩线性图中选择符合所需扭矩的尺寸。

①静负荷(Ts)

需要夹紧等静态的压紧力时。

Ts=Fs×L

Ts: 所需负荷(N·m) Fs: 所需的力(N)

L : 从旋转中心到作用点的长度(m)

②阻力负荷(T_R)

承受摩擦力、重力、其他外力合成的力时。

$T_R = K \times F_R \times L$

T_R: 所需负荷(N·m)

K: 余量系数 (负荷不变 K=2

↓负荷变动 K=5

F_R: 所需的力(N)

L : 从旋转中心到作用点的长度(m)

③惯性负荷(TA) 旋转物体时

$$T_A = 5 \times I \times \dot{\omega}$$

$$\dot{\omega} = \frac{2\theta}{t^2}$$

T_A: 所需负荷(N·m) I: 惯性力矩(kg·m²) ω: 最大角加速度(rad/s²)

θ: 摆动角度(rad)t: 摆动时间(s)

惯性力矩请利用惯性力矩和摆动时间(第1324页)以及惯性力矩计算图(第1325页)等进行计算。

Step3 允许能量的确认

惯性负荷时,摆动端负荷的动能超出允许值时会导致气缸破损。请按照表 1 ,选择能量为允许值以内的机种。 能量过大时,请在外部使用缓冲器等停止负荷。

$$E = \frac{1}{2} \times I \times \omega^{2}$$

$$\omega = \frac{2\theta}{t}$$

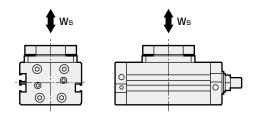
E : 动能(J)

Ⅰ: 惯性力矩(kg・m²)

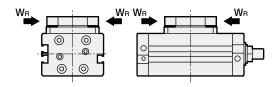
 ω : 摆动终端的角速度(rad/s)

θ: 摆动角度(rad)t: 摆动时间(s)

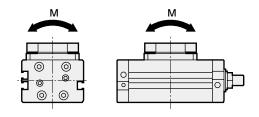
惯性力矩请利用惯性力矩和摆动时间(第1324页)以及惯性力矩计算图(第1325页)等进行计算。


选型指南:选型方法

选型方法


Step4 允许负荷的确认

对摆台直接施加负荷重量时,请设为表2的允许值以下。 复合负荷时,相对于各负荷允许值的总比例请设为1.0以下。 负荷分为以下3种。


①推力负荷(轴向负荷)

②径向负荷(横向负荷)

③力矩负荷

求出各负荷后,请代入下式进行确认。

Ws	_	WR		М	<10
Wsmax	T	WRmax	T	Mmax	- < 1.0

 Ws
 : 推力负荷(N)

 WR
 : 径向负荷(N)

 M
 : 力矩负荷(N・m)

 Wsmax
 : 允许推力负荷(N)

 WRmax
 : 允许径向负荷(N)

 Mmax
 : 允许力矩负荷(N・m)

允许吸收能量值及各负荷的允许值如下表所示。

表1 允许吸收能量值

尺寸	5	10	20	30	50	80
基本型・高精度型	0.005	0.008	0.03		0.04	0.11
带外置缓冲器	0.46	0.59	1.15	1.71	2.33	2.78

表2 允许负荷值		$W_{\sf Smax}$ $W_{\sf Rmax}$ $M_{\sf max}$					
尺寸		5	10	20	30	50	80
推力负荷	基本型	50	80	140	200	450	580
$Ws_{max}[N]$	高精度型	-	120	220	440	550	650
径向负荷	基本型	30	80	150	200	320	400
$W_{\text{Rmax}}[\textbf{N}]$	高精度型	-	100	160	240	380	480
力矩负荷	基本型	1.5	2.5	4.0	5.5	10.0	13.0
$M_{\text{max}}[N \cdot m]$	高精度型	-	3.0	5.0	7.0	12.0	15.0

LCR LCG LCW LCX STM STG STR2 UCA2 ULK* JSK/M2 JSG JSC3 • JSC4 USSD UFCD USC UB JSB3 LMB LML **HCM** HCA LBC CAC4 UCAC2 CAC-N UCAC-N RCS2 RCC2 PCC SHC MCP GLC MFC BBS RRC GRC

RV3*

NHS

HRL

LN 卡爪 卡盘

缓冲器 FJ FK 速度 控制器

卷末

LCM

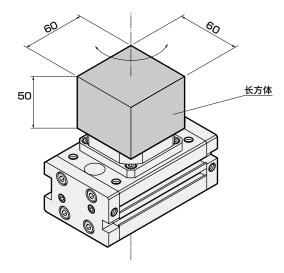
[J]

LCM LCR LCG LCW I CX STM STR2 UCA2 ULK* JSK/M2 JSG JSC3 · JSC4 USSD **UFCD** USC UB JSB3 I MI **HCM**

RCS2
RCC2
PCC
SHC
MCP
GLC
MFC
BBS
RRC
GRC
RV3**

HCA

LBC CAC4 UCAC2


CAC-N

UCAC-N

RRC GRC RV3** NHS HRL LN 卡面 和城卡爪 卡盘 缓冲器 FJ FK 读度 控制器

选型示例①

有长方体负荷时

<动作条件>

压力 : 0.5 (MPa) 摆动角度 : 90° 摆动时间 : 0.6 (s) 负荷(材质 : 铝合金) <长方体>: 0.5 (kg)

Step 1 摆动时间的确认

根据动作条件,摆动时间为 $0.6(s/90^\circ)$ 。在摆动时间调整范围 $0.2\sim1.5(s/90^\circ)$ 以内时,进入下一步。

Step2 大小(扭矩)的选定

由于是惯性负荷,首先计算惯性力矩(l)。 <长方体>

$$I = 0.5 \times \frac{0.06^2}{6} = 3 \times 10^{-4} (kg \cdot m^2)$$

接着,计算最大角加速度 $(\dot{\omega})$ 。

根据条件, $\theta = 90^{\circ} = \frac{\pi}{2} (rad)$, t = 0.6 (s)

因此

$$\dot{\omega} = \frac{2\theta}{t^2} = \frac{\pi}{0.6^2} = 8.73 \,(\text{rad/s}^2)$$
@

因此根据①、②,惯性负荷(Ta)为

 $T_A = 5 \times 3 \times 10^{-4} \times 8.73$

= 0.0131(N·m)(3)

根据③的值、动作条件以及0.5(MPa)时的扭矩,可以选择。

Step3 允许能量的确认

进行动能的计算,确认是否在允许能量值范围内。 计算摆动终端处的角速度 ω 。

根据条件,
$$\theta = 90^{\circ} = \frac{\pi}{2} \text{ (rad)}, \quad t = 0.6 \text{ (s)}$$

因此,

$$\omega = \frac{2\theta}{t} = \frac{\pi}{0.6} = 5.24 \text{ (rad/s)}$$

因此,动能(E)为

$$E = \frac{1}{2} \times 3 \times 10^{-4} \times 5.24^{2}$$

$$= 0.00412(J) \qquad$$

根据④和Step2选择的A,可以选择。

Step4 允许负荷的确认

最后,计算负荷作用于滑台的负荷值,确认是否在允许负荷 值范围内。

<推力负荷>

推力负荷(Ws)为、

Ws=0.5×9.8=4.9(N)

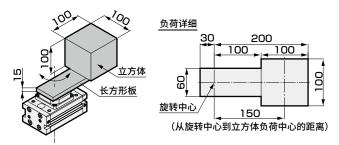
<径向负荷>

无径向负荷,因此

 $W_R = O(N)$

<力矩负荷>

无力矩负荷,因此


 $M=O(N \cdot m)$

根据⑤、⑥、⑦、⑧,

根据®、©,总负荷值为允许负荷值以内,因此可以选择。

选型示例②

长方形板上有长方体负荷时

<动作条件>

: 0.5 (MPa) 摆动角度 : 90° 摆动时间 : 1.0(s) 负荷(材质: 钢材)

<旋转中心左侧的长方形板> : 0.21(kg) <旋转中心右侧的长方形板> : 1.40(kg) : 7.8(kg)

Step1 摆动时间的确认

根据动作条件,摆动时间为1.0(s/90°)。在摆动时间调整 范围0.2~1.5(s/90°)以内时,进入下一步。

Step2 大小(扭矩)的选定

由于是惯性负荷,首先计算惯性力矩(I)。 <长方形板>

$$I_1 = 1.40 \times \frac{4 \times 0.20^2 + 0.06^2}{12} + 0.21 \times \frac{4 \times 0.03^2 + 0.06^2}{12}$$

 $= 1.92 \times 10^{-2} (\text{kg} \cdot \text{m}^2)$

<立方体>

$$l_2 = 7.8 \times \frac{0.1^2}{6} + 7.8 \times 0.15^2$$

 $=0.189(kg \cdot m^2)$

因此,全体的惯性力矩(I)如下所示。

 $I=I_1+I_2=0.21 (kg \cdot m^2) \cdots$ 接着,计算最大角加速度 $(\dot{\omega})$ 。

根据条件, $\theta = 90^{\circ} = \frac{\pi}{2} (rad)$, t = 1.0 (s)

因此,

$$\dot{\omega} = \frac{2\theta}{t^2} = \frac{\pi}{1.0^2} = 3.14 \text{ (rad/s}^2) \cdots$$

因此根据①、②,惯性负荷(Ta)为

 $T_A = 5 \times 0.21 \times 3.14$

 $= 3.30(N \cdot m)$ ······3

根据③的值、动作条件以及O.5 (MPa) 时的扭矩,可以选择。

GRC-50-90

Step3 允许能量的确认

进行动能的计算,确认是否在允许能量值范围内。 计算摆动终端处的角速度 ω 。

根据条件, $\theta = 90^{\circ} = \frac{\pi}{2}$ (rad), t=1.0(s)

$$\omega = \frac{2\theta}{t} = \frac{\pi}{1.0} = 3.14 \text{ (rad/s)}$$

因此,动能(E)为

$$E = \frac{1}{2} \times 0.19 \times 3.14^{2}$$

Step4 允许负荷的确认

最后,计算负荷作用于滑台的负荷值,确认是否在允许负荷 值范围内。

<推力负荷>

合计重量为

$$7.8 + 1.40 + 0.21 = 9.41 (kg)$$

因此,推力负荷(Ws)为

$$Ws = 9.41 \times 9.8 = 92.2(N) \cdots 5$$

<径向负荷>

无径向负荷,因此

$$W_R = O(N)$$

<力矩负荷>

长方形板的力矩负荷(M1)为

$$1.40 \times 9.8 = 13.72(N)$$

$$0.21 \times 9.8 = 2.06(N)$$

因此,

$$M_1 = 13.72 \times 0.1 - 2.06 \times 0.015$$

= 1.34(N·m)

长方体的力矩负荷(M2)为

$$7.8 \times 9.8 = 76.44(N)$$

因此,

$$M_2 = 76.44 \times 0.15 = 11.47(N \cdot m)$$

由此, 计算M1、M2 的合计值,

$$M = 1.34 + 11.47 = 12.81 (N \cdot m) \cdots$$

根据⑤、⑥、⑦、圆,

$$\frac{W_s}{W_{smax}} + \frac{W_R}{W_{Rmax}} + \frac{M}{M_{max}}$$

$$=\frac{92.2}{450}+\frac{0}{320}+\frac{12.8}{10}=1.48>1.0$$

力矩负荷超出了允许值,因此加大1个尺寸,再使用GRC-80-90重新计算。

$$\frac{W_{\text{S}}}{W_{\text{Smax}}} + \frac{W_{\text{R}}}{W_{\text{Rmax}}} + \frac{M}{M_{\text{max}}}$$

$$=\frac{92.2}{580}+\frac{0}{400}+\frac{12.8}{13}=1.14>1.0$$

此外,总负荷值超出了允许值,因此选择高精度型重新计算,

$$\frac{W_s}{W_{smax}} + \frac{W_R}{W_{Rmax}} + \frac{M}{M_{max}}$$

$$=\frac{92.2}{650}+\frac{0}{480}+\frac{12.8}{15}=0.99 \le 1.0 \cdots \odot$$

根据©,总负荷值为允许负荷值以内,因此可以选择。

LCM LCR LCG

旋转轴承受水平的长方形板负荷时

LCM LCR LCG LCW I CX STM STR2 UCA2 ULK* JSK/M2 JSG JSC3 · JSC4 USSD **UFCD** USC UB I MI **HCM** HCA

SHC MCP GLC MFC BBS RRC GRC

NHS HRL LN 卡爪 卡盘 缓冲器 FJ FΚ

卷末

速度 控制器

CAC-N UCAC-N RCS2 RCC2

LBC

CAC4 UCAC2

PCC

RV3*

摆动时间 : 0.5(s)

负荷详细

60

旋转中心

<动作条件>

摆动角度

压力

60

负荷(材质 : 铝合金)

: 180°

<长方形板>: 0.2(kg) <长方体> : 0.5(kg)

: 0.5 (MPa)

Step 1 摆动时间的确认

根据动作条件,摆动时间为0.5(s/180°)。在摆动时间调 整范围0.4~3.0(s/180°)以内时,进入下一步。

105

(从旋转中心到长方形板负荷中心的距离)

Step2 大小(扭矩)的选定

由于重力作用下的阻力负荷和惯性负荷,需计算阻力负荷 (TR)和惯性力矩(I)。

<电阻负荷>

阻力负荷会随着滑台的旋转而变。

$$F_R = 0.2 \times 9.8 = 1.96(N)$$

R = 0.105(m)

$$T_R = 5 \times 1.96 \times 0.105 = 1.03(N \cdot m) \cdots$$

<惯性负荷>

[长方形板]

$$I_1 = 0.2 \times \frac{0.15^2}{12} + 0.2 \times 0.105^2$$

 $=2.58\times10^{-3}(kg \cdot m^2)$

[长方体部]

$$I_2 = 0.5 \times \frac{0.06^2}{6} = 3 \times 10^{-4} (\text{kg} \cdot \text{m}^2)$$

因此,全体的惯性力矩(I)如下所示。

$$I = I_1 + I_2 = 2.88 \times 10^{-3} (\text{kg} \cdot \text{m}^2) \cdots 2$$

接着,计算最大角加速度($\dot{\omega}$)。

根据条件, $\theta = 180^{\circ} = \pi \text{ (rad)} \setminus t = 0.5 \text{ (s)}$

选型示例③

长方形板

60

长方体

150

因此,

Step3 允许能量的确认

进行动能的计算,确认是否在允许能量值范围内。 计算摆动终端处的角速度 ω 。

根据条件, $\theta = 180^{\circ} = \pi \text{ (rad)} \setminus t = 0.5 \text{ (s)}$

$$\omega = \frac{2\theta}{t} = \frac{2\pi}{0.5} = 12.57 \text{ (rad/s)}$$

因此,动能(E)为

$$E = \frac{1}{2} \times 2.88 \times 10^{-3} \times 12.57^{2}$$

$$= 0.23 \text{ (J)} \qquad \text{(6)}$$

=0.23(J)根据⑥和 Step2 选择的⑥,可以选择。

选型指南:选型示例

选型示例③

Step4 允许负荷的确认

最后,计算负荷作用于滑台的负荷值,确认是否在允许负荷 值范围内。

<推力负荷>

无推力负荷,因此推力负荷(Ws)为

$$Ws = O(N) \cdots$$

<径向负荷>

合计重量为

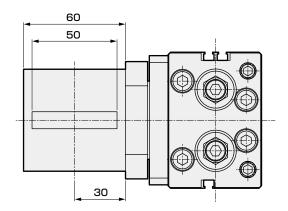
$$0.2 + 0.5 = 0.7 (kg)$$

因此,

$$W_R = 0.7 \times 9.8 = 6.9(N) \cdots 8$$

<力矩负荷>

根据下图,力矩负荷(M)为


$$M = 0.03 \times (0.2 + 0.5) \times 9.8$$

= 0.21 (N·m)

根据⑦、⑧、⑨、圆,

$$\frac{W_{\text{S}}}{W_{\text{Smax}}} + \frac{W_{\text{R}}}{W_{\text{Rmax}}} + \frac{M}{M_{\text{max}}}$$

$$=\frac{0}{150} + \frac{6.9}{140} + \frac{0.21}{4.0} = 0.101 \le 1.0 \cdots \bigcirc$$

根据B、C,总负荷值为允许负荷值以内,因此可以选择。

LCM LCR LCG LCW LCX STM STG STS · ST STR2 UCA2 ULK* JSK/M2 JSG JSC3 • JSC4 USSD UFCD USC UB JSB3 LMB LML HCM HCA LBC CAC4 UCAC2 CAC-N UCAC-N RCS2 RCC2 PCC SHC MCP GLC MFC BBS RRC GRC RV3* NHS HRL LN 卡爪 卡盘 机械卡爪 卡盘 缓冲器 FJ FK 速度 控制器

卷末