STR2 Series

LCM

LCR LCG

LCX STM

STG STS·STL STR2 UCA2 ULK*

JSK/M2 JSG JSC3+JSC4

USSD UFCD USC UB

JSB3 LMB

HCM

HCA

LBC

CAC4

UCAC2

CAC-N

UCAC-N

RCS2

PCC

SHC

MCP

GLC

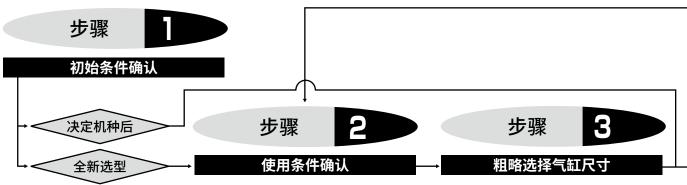
MFC BBS

RRC

RV3* NHS

HRL

LN 卡爪


卡盘

缓冲器

FJ

^{速度} 控制器

选型条件与普通的气缸不同,因此请通过选型指南来确认可否适用。

步骤 2 使用条件确认

- 1.使用压力 P (MPa)
- 2.总负荷重量 W (N)

〈总负荷重量〉

W=(负荷重量)+(夹具负荷)+(可动部自重力: Fa)的值。可动部自重力计算公式如表1所示。

表 1 可动部自重力计算公式

缸径	Fa:可动部自重力(N)	
	STR2	
φ6	0.16+0.002ST	
φ10	0.38+0.004ST	
φ16	1.08+0.013ST	
φ20	1.66+0.013ST	
φ25	2.82+0.025ST	
φ32	4.33+0.025ST	

3.安装方向

〈动作方式〉

水平、垂直-上升、垂直-下降

- 4.行程 ST (mm)
- 5.动作时间 t (s)
- 6.动作速度 V (mm/s)

气缸平均动作速度Va的计算公式

Va=ST /t (mm/s)

步骤 3 粗略选择气缸尺寸

● 气缸大小(缸径)的计算公式

 $F = \pi/4 \times D^2 \times P$

 $\therefore D = \sqrt{4F/\pi} P$

 D: 气缸的缸径
 (mm)

 P: 使用压力
 (MPa)

 F: 气缸的理论推力
 (N)

根据理论推力表进行计算时 概略的所需推力≥负荷重量×2

(负荷重量×2的×2是以负荷率50%左右 为安全系数时的情况)

〈例〉 使用压力 O.5 (MPa)

负荷重量 25(N)

所需推力为 $25(N) \times 2=50(N)$ 根据表2选择当使用压力为0.5MPa时理论推力在50N以上的缸径,为 ϕ 10以上。

 $D = \phi 10$

〈气缸的理论推力〉

表2 气缸的理论推力表

理论推力表

单位:N

生化压力化 中位:11				
缸径	动作方向	使用压力 MPa		
(mm)	WJTF刀IPJ	0.1	0.15	0.2
φ6	伸出	_	_	11.3
ψο	缩回	-	-	6.28
φ10	伸出	_	_	31.4
ψισ	缩回	-	-	20.1
φ16	伸出	40.2	60.3	80.4
ψιο	缩回	24.5	36.8	49.0
φ20	伸出	62.8	94.2	1.26×10 ²
ΨΖΟ	缩回	40.2	60.3	80.4
425	伸出	98.2	1.47×10 ²	1.96×10 ²
φ25	缩回	67.4	1.01×10 ²	1.35×10 ²
φ32	伸出	1.61×10 ²	2.41×10 ²	3.22×10 ²
Ψ32	缩回	1.21×10 ²	1.81×10 ²	2.41×10 ²

[※]理论推力表请参阅第580页。

LCM LCR LCG LCW LCX STM STG STS+STI STR2 UCA2

ULK* JSK/M2

JSC3+JSC

USSD

USC UB

JSB3 LMB LML HCM

HCA

LBC CAC4

UCAC2

UCAC-N

RCS2

PCC

SHC

MCP

MFC

RRC

RV3

NHS

HRL

LN 卡爪

步骤 4

总负荷重量(W)、各力矩值的计算

续下页

〈扭转力矩〉

● 根据负荷的气缸安装状态,计算静态负荷 (Wo)、力矩(M)。

Wo=(负荷重量)+(夹具负荷)(N)

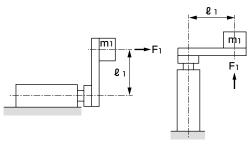
 $M_1=F_1\times \varrho_1$

 $(N \cdot m)$

 $M_2=F_2\times \ell_2$

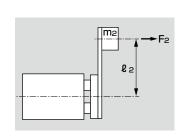
 $(N \cdot m)$

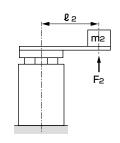
Мз=Fз× **Q** з

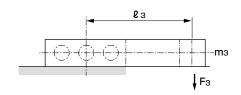

 $(N \cdot m)$

F1、F2、F3的值使用图2

图2 各力矩的计算公式 根据负荷重量与惯性系数、偏心距离来计算 各力矩。

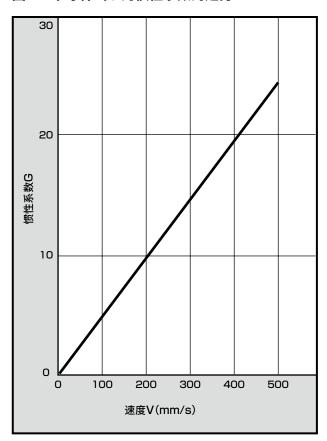

〈弯曲力矩〉


 $M_1=F_1\times \ell_1=10\times m_1\times G\times \ell_1$

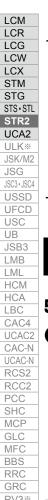


〈横向弯曲力矩〉

 $M2=F2\times \ell 2=10\times m2\times G\times \ell 2$


mз: **l**1:

2 : } 偏心距离(m)


₽3:

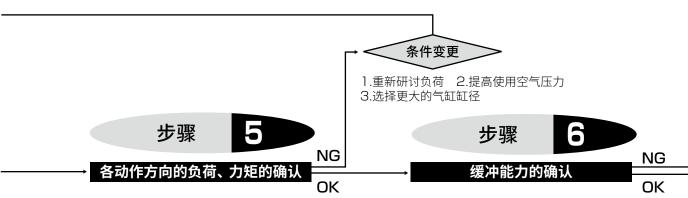

G: 惯性系数

图3 带导杆气缸的惯性系数的趋势

LCM LCR LCG LCW LCX STM STG STS · STL STR2 UCA2 ULK* JSK/M2 JSG JSC3 • JSC4 USSD UFCD USC UB LMB I MI **HCM** HCA LBC CAC4 UCAC2 CAC-N UCAC-N RCS2 RCC2 PCC SHC MCP GLC BBS RRC RV3 NHS HRL LN

各动作方向的负荷、力矩的确认

5-1 负荷重量的确认

● 水平动作时

静态负荷重量应在允许负荷值以下

静态负荷重量 Wo

在步骤4中计算出

的值

允许横向负荷 Wmax 根据行程

在表3中选择

(中间行程时,选择较长的标准行程) Wo≤Wmax

表3 允许横向负荷

● 滑动轴承

卡爪 卡盘 缓冲器 FJ FΚ 速度 控制器

卷末

单位:N

型 号	行程(mm)			
至亏	10	20	30	40
STR2-M-6	2.4	1.9	1.5	1.3
STR2-M-10	5.8	4.8	4.1	3.5
STR2-M-16	15.9	13.3	11.5	10.1
STR2-M-20	20.3	17.3	15.1	13.4
STR2-M-25	22.1	18.9	16.5	14.7
STR2-M-32	34.9	30.2	26.7	23.9

● 滚动轴承

单位:N

型 号	行程(mm)			
至亏	10	20	30	40
STR2-B-6	2.6	1.9	1.5	1.2
STR2-B-10	6.0	4.4	3.6	3.0
STR2-B-16	11.4	8.5	7.0	5.9
STR2-B-20	12.7	9.6	7.9	6.8
STR2-B-25	14.7	11.1	9.2	7.9
STR2-B-32	24.3	18.5	15.4	13.3

※允许横向负荷请参阅第624页。

偏心负荷时请参阅第625页、第626页的图表。

2 垂直动作时

总负荷重量应为理论推力值与负荷率相结合后的值

● 负荷率的计算

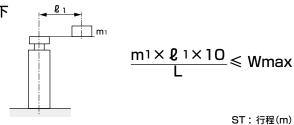
总负荷重量

W 在步骤2中计算出的值

气缸的理论推力

在理论推力表第580页中

根据压力进行选择。


 $\alpha = W/F \times 100(\%)$

● 根据气缸的动作速度的稳定性余量和寿 命等、以及利用状况来决定负荷率。常规使 用时,应控制在表4的范围内。

表4 负荷率的适用范围(参考值)

使用压力(MPa)	负荷率(%)
0.1~0.3	α≤40
0.3~0.6	α≤50
0.6~1.0	α≤60

● 偏心负荷时,横向负荷发生作用。 发生作用的横向负荷应在表3的允许横向负荷以

缸径 缸径 0.022+ST φ20 0.032+ST φ6 φ10 0.027+ST φ25 0.034+ST 0.026+ST φ16 φ32 0.036+ST

5-2 力矩的确认

将弯曲力矩、横向弯曲力矩除以表5的值,以 计算力矩比率,力矩比率的合计值应为1.0以下

● 力矩比率的计算

弯曲力矩 Мı 在步骤4中 M₂ 计算出的值 横向弯曲力矩

M1/M1max+M2/M2max≤1.0

选型指南

LCM

LCR LCG LCW LCX

STM

STG

STS · STL

条件变更

- 1.在外部设置缓冲装置(缓冲器)
- 2.降低动作速度
- 3.增大气缸缸径

选型完成

表5 力矩的允许值

(M • M

缸径	允许弯曲力矩M1max • M2max
φ6	3.6
φ10	3.6
φ16	9.2
φ20	9.2
φ25	74
φ32	74

②扭转力矩应在允许旋转扭矩以下 扭转力矩 M3 在步骤4中计算出的值允许旋转扭矩 M3max 根据行程在表6中选择 (中间行程时,选择较长的标准行程)

Мз ≤ Мзтах

表6 允许旋转扭矩

● 滑动轴承

(N·m)

型 号	行程(mm)			
至 亏	10	20	30	40
STR2-M-6	0.008	0.006	0.005	0.004
STR2-M-10	0.029	0.024	0.020	0.017
STR2-M-16	0.099	0.083	0.071	0.063
STR2-M-20	0.142	0.121	0.105	0.093
STR2-M-25	0.187	0.160	0.140	0.125
STR2-M-32	0.383	0.332	0.293	0.262

● 滚动轴承

(N • m)

● /1₹~//πμ/5*				(14 111)
型 号	行程(mm)			
至 亏	10	20	30	40
STR2-B-6	0.009	0.006	0.005	0.004
STR2-B-10	0.030	0.022	0.018	0.015
STR2-B-16	0.071	0.053	0.043	0.036
STR2-B-20	0.088	0.067	0.055	0.047
STR2-B-25	0.125	0.094	0.078	0.067
STR2-B-32	0.267	0.203	0.169	0.146

※允许旋转扭矩请参阅第627页。

步骤 6 缓冲能力的确认

根据气缸本身所具备的缓冲能力,确认能否吸收 实际使用的负荷的动能。

- 气缸所具备的允许吸收能量(E1)使用表7中的值。
- 活塞的动能(E2)计算公式

 $E_2 = 1/2 \times W \times V^2 \times \frac{1}{10} \qquad (J)$

W:总负荷重量(N) 在步骤2中 计算出的值

V:活塞的缓冲冲击速度(m/s)

 $V=ST/t\times(1+1.5\times\alpha/100)$

ST: 行程 (m) t : 动作时间 (s) α : 负荷率 (%)

气缸的允许吸收能量

● 气缸的缓冲机构的动能吸收能的值因气缸 的缸径而异。带导杆气缸用表7的值进行 对比。

表7 STR2的允许吸收能量(E1)

次/ OTTICHIJUIT 次次配主(CT/				
缸径	允许吸收能量(J)			
11位	橡胶缓冲			
	伸出	缩回		
φ6	0.008	0.059		
φ10	0.061	0.083		
φ16	0.181	0.083		
φ20	0.303	0.127		
φ25	0.68	0.237		
φ32	1.3	0.311		

E1>E2

(允许吸收能量)>(活塞的动能)

选型完成

E1<E2

(允许吸收能量)<(活塞的动能)

STR2 UCA2 ULK* JSK/M2 JSC3+JSC USSD **UFCD** USC UB JSB3 LMB LML **HCM** HCA LBC CAC4 UCAC2 CAC-N UCAC-N RCS2 RCC2 PCC SHC MCP GLC MFC BBS RRC RV3 NHS HRL LN 卡爪 卡盘 缓冲器 FJ FΚ 速度 控制器 卷末