

气动元件

为了安全地使用本产品

使用前请务必阅读。

关于气缸常规内容请在卷头73确认,关于气缸开关请在卷头80确认。

个别注意事项:超级紧凑型气缸 SSD2系列

设计•选型时

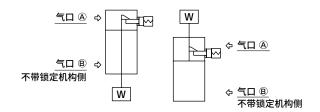
1. 耐热气缸带开关 SSD2-T1L

▲警告

■ 气缸

请注意在环境温度150℃的环境下,使用50万次左右时会逐渐发生外部泄漏。

■ 耐热气缸带开关


指示灯使用LED。

如在高温下连续使用,可视性会逐渐降低。因为与开关输出是不同系统的回路构成,即使LED突然熄灭,开关输出仍正常动作。

2. 防坠落型 SSD2-Q

▲警告

要解除锁定机构时,请务必对气口@供给压力,在锁定机构 不承受负荷的状态下进行解除。

■快速排气阀加快下降速度的使用方法,有时气缸缸体的动作会早于锁紧销的动作,从而导致无法正常解除。防坠落型气缸请勿使用快速排气阀。

■ 请勿使用3位阀。

请勿与3位(特别是中封金属密封型) 阀组合使用。如果压力被封闭在带锁定机构侧的气口内,则将无法锁定。此外,即使进行了锁定,从阀漏出的空气会进入气缸,经过一定时间后锁定可能会被解除。

▲注意

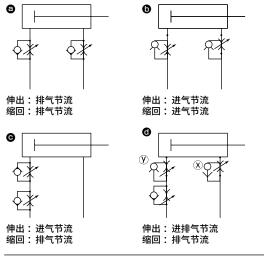
■ 请将气缸的负荷率控制在50%以下。

如果负荷率较高,锁定可能不会被解除,从而导致锁定部损坏。

- 如果锁定机构侧承受背压,锁定有时会松脱,因此 请使用单体阀或集成的单独排气型阀。
- 请勿同步使用多个气缸。

请勿采用使两个以上的防坠落型气缸同步以驱动1个工件的使用方法。有时可能会无法解除其中1个气缸的锁定。

3. 微速型 SSD2-F . SSD2-KF


▲注意

- **请在不给油状态下使用。** 如果给油,有时特性会发生变化。
- 调速阀请靠近气缸安装。

如果远离气缸安装,速度会变得不稳定。请使用SC-M3/M5、SC3W、SCD-M3/M5、SC3U系列调速阀。

- 通常气压越高、负荷率越低,速度越稳定。 负荷率请在50%以下使用。
- 通过排气节流回路进行速度控制时较为稳定。

单活塞杆气缸且动作方向为伸出时以微速驱动的情况下,如果负荷阻抗较小,在开始动作时会发生飞出现象。作为解决方法,请采用❺、❷、❺回路。❺回路最为稳定。

●回路的伸出动作调速方法:

- 1.通过 x 调速阀进行速度设定
- 2.通过 y 调速阀进行节流直至没有飞出现象为止。
- 3.再次确认速度

(注1)与❺❻❶相比,❶回路的动作最为稳定。

SCP*3

CMK2

CMA2

SCM

SCG

SCA2

SCS2

CKV2

ČOVP/N2

SSD2

SSG

SSD

MDC2

MVC

SMG

MSD. MSDG

FC*

SRL3

SRG3

SRM3

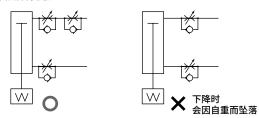
SRT3

MRL2

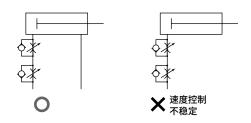
MRG2

SM-25

缓冲器


FJ

FK


调速阀

个别注意事项

(注2)垂直安装时,在进气节流回路中会因为自重而坠落,因此请与排气节 流回路组合使用。

(注3)调速阀的串联连接请采用下图所示的回路。

(发生飞出现象的标准)

下列情况下将发生飞出现象。

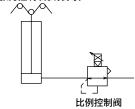
•推力>阻力

※阻力:基于排气侧残压的推力→ (微速型:吸气压=残压)
★配子

- 请勿对气缸施加横向负荷。 此外,安装滑动导承时,请注意避免扭转力。 承受横向负荷的状态下,会导致动作变得不稳定。
- **请避免在有振动的场所使用。** 受到振动影响,将导致动作不稳定。

4. 低摩擦型 SSD2-KU

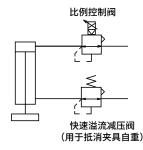
▲ 警告


■ 耐久性因使用条件和机种的特性而异。 此外,本气缸存在内部泄漏。 有关泄漏量,请参阅规格(第864页)。

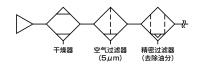
▲注意


■ 请在气缸上安装调速阀。

请在气缸上安装调速阀。请在各气缸的使用活塞速度范围内使用。在均压器等中使用时,为改善供排气效率,有时不安装调速阀可能会更好。根据不同用途,推荐以下❸~❸的回路。


②张力控制(绕线机等)

●平衡器(机床Z轴等)



●负荷控制(研磨等)

※为改善供排气特性,请尽可能增大配管容积。

- 请勿给油。否则会改变特性。
- 劣质空气会导致特性恶化,并对耐久性产生不良影响,因此在下列配管中请使用清洁的空气。

■ **调速阀请靠近气缸安装。** 如果远离气缸安装,速度会变得不稳定。

- 通常气压越高、负荷率越低,速度越稳定。 负荷率请在50%以下使用。
- 超级紧凑型气缸高负荷型内置有橡胶缓冲。第 1060页的表所示为缓冲可吸收的动能。动能超过 该值时,请考虑另行设置缓冲装置。

SCP*3

CMK2

CMA2

SCM

SCG

SCA2

SCS2

CKV2

SSD2

SSG

SSD

CAT

MDC2

MVC

SMG

MSD:

FC*

STK

SRL3

SRG3

SRM3 SRT3

MRL2

MRG2

SM-25

缓冲器 FJ

FK

调速阀

SCP*3	缸径 (mm)	允许吸收能量 (J)			
CMK2	(IIIII)	SSD2-K	SSD2-KU		
	φ12	0.04	_		
	φ16	0.09	_		
	φ20	0.16			
	φ25	0.16			
SCM	φ32	0.40			
	φ40	0.63			
	φ50	0.98			
SCG	φ63	1.56			
	φ80	2.51			
	φ100	3.92			

动能(J)=<mark>2</mark>×重量(kg)×{速度(m/s)}²

(注)动能的计算方法

SCA2

SCS2

CKV2

CAV2 · COVP/N2

SSD2

SSG

SSD

CAT

MDC2

MVC

SMG

MSD: MSDG

FC*

STK

SRL3

SRG3

SRM3

SRT3

MRL2

MRG2

SM-25

缓冲器

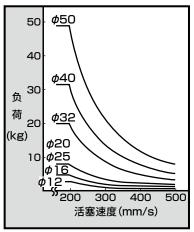
FJ

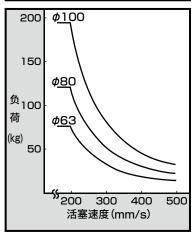
FK

气缸平均速度用Va=L

Va:平均速度 (m/s) L:气缸的行程 (m) T:动作时间 (s)

与之相对的,行程终点前的气缸速度可通过以下的简易公式求出。


 $Vm = \frac{L}{T} \times (1 + 1.5 \times \frac{\omega}{100})$


Vm: 行程终点前的气缸速度 (m/s) ω: 气缸负荷率 (%)

计算动能时,请以该Vm的值为速度。

以下为将超级紧凑型气缸高负荷型的允许能量值转换为活塞速度与负荷的 关系的曲线。

高负荷型允许能量值曲线

●注:曲线左下方的范围可以使用。右上侧的范围 需要外部缓冲。

卷末

调速阀

(5. 耐切削油型 SSD2-G2·G3/SSD2-KG2·KG3

▲注意

- 请勿对活塞杆施加单侧负荷。可能会缩短刮板和轴 承的寿命。
- 活塞杆无切削油或水飞散时,请使用G、G1系列。 G2、G3系列无切削油或水飞散时,说明活塞杆的 润滑耗尽,会缩短使用寿命,请予以注意。
- 请在气缸上安装调速阀。
 - ●请在气缸上安装调速阀。请在各气缸的使用活塞速度范围 内使用。

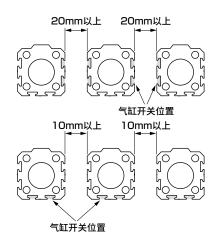
(6. 防焊渣附着型 SSD2-G4/SSD2-KG4/SSD2-DG4

▲警告

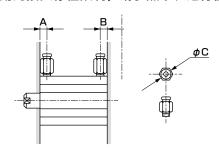
■ 本气缸系列在飞溅物环境下的耐久性优于普通型气缸。但是,在其他环境中使用时,耐久性可能会逊于普通型气缸,请予以注意。

个别注意事项

安装•装配•调整时


1. 通用

▲注意


■ 气缸开关附近有铁板等磁性体时,可能会导致误动作,因此请与气缸表面空开10mm以上的距离。 (所有缸径 相同)

■ 与气缸邻接时,可能会导致气缸开关误动作,因此 请与气缸表面空开以下所示距离。(所有缸径 相同)

■ 可使用的接头存在限制,请参照下表进行使用。

项目 缸径(mm)	气口通径	气口位 A	置尺寸 B	可使用的接头	接头外径 夕 C	不可使用的 接头
φ12		5.5	5.5	SC3W-M5-4	φ11以下	GWS6-M5
φ16	M5			SC3W-M5-6 GWS4-M5-S		
φ20		8	5.5	GWS4-M5 GWL4-M5		
φ25		11	6	GWL6-M5		
φ32	D-1/0	8	8	SC3W-6-4、6、8 GWS4-6 GWS6-6	φ15以下	GWS10-6 GWL8-6 GWL10-6
φ40	Rc1/8	12	8.5	GWS8-6 GWL4-6 GWL6-6		
φ50	D-1/4	10.5	10.5	SC3W-8-6, 8, 10 GWS4-8 GWS6-8 GWS10-8 GWL4~12-8	401NT	GWS12-8
φ63	Rc1/4	13	11		φ21以下	
φ80	Rc3/8	16	13	SC3W-10-6, 8, 10 GWS6-10 GWS8-10 GWS10-10 GWL6~12-10	ø 21以下	_
φ100	nu3/8	23	15		ΨΕΙΚΙ	

(2. 单作用型 SSD2-X・SSD2-Y

▲注意

■ 单作用型气缸请勿在加压后长期放置。

如果在加压后长期放置,释放压力时,活塞杆可能会因为弹 簧负荷而无法复位。需要在加压放置状态下使用时,请使用 双作用型。

3. 防坠落型 SSD2-Q

▲注意

- 锁定机构是在行程终点处生效,因此如果在行程中 途通过外部挡块进行阻挡,则锁定机构可能会失效, 从而导致坠落。设置负荷时,请务必确认锁定机构 有效。
- 带锁定机构侧的气口请供给最低使用压力以上的压力。
- 带锁定机构侧的配管较细长时,或者调速阀离气缸 气口较远时,排气速度会变慢,锁定生效可能会需 要一定的时间,请予以注意。此外,如果阀的排气 口上安装的消音器堵塞,会引发相同的结果。

4. 微速型 SSD2-F·SSD2-KF

▲注意

- 对心等调整时请注意避免对气缸施加横向负荷。 此外,请将滑动导承调整至没有扭转力后再安装。
 - ●如有负荷变动、阻力变动,动作将会变得不稳定。
 - ●静摩擦和动摩擦的差较大的导承会导致动作变得不稳定。

5. 低摩擦型 SSD2-KU

▲注意

- 对心等调整时请注意避免对气缸施加横向负荷。此外,请将滑动导承调整至没有扭转力后再安装。
 - ●如有负荷变动、阻力变动,动作将会变得不稳定。
 - ●长行程时,活塞杆的自重会导致速度不稳定。请在安装导 承后使用。
 - ●静摩擦和动摩擦的差较大的导承会导致动作变得不稳定。
- 请避免在水蒸汽及潮湿环境、碱性环境下使用。

SCP*3

CMK2

CMA2

SCM

SCG

SCA2

SCS2

CKV2

CAV2 • COVP/N2

SSD2

SSG

SSD

CAT

MDC2

MVC

SMG

MSD.

FC*

STK

SRL3

SRG3

SRM3

SRT3

MRL2

MRG2

1711 (02

SM-25

缓冲器

FJ

FK

调速阀

SCP*3

CMK2

CMA2

SCM

SCG

SCA2

SCS2

CKV2

CAV2 · COVP/N2

SSD2

SSG

SSD

CAT

MDC2

MVC

SMG

MSD: MSDG

FC*

STK

SRL3

SRG3

SRM3

SRT3

MRL2

MRG2

SM-25

缓冲器

FJ

FK

调速阀

卷末

6. 防回转型 SSD2-M、DM

▲注意

- **请勿采取可能会对活塞杆施加转动扭矩的使用方法。** 防回转轴套变形,寿命显著缩短。
- 请始终在对活塞杆的轴向施加负荷的状态下使用活 寒杆。
- 在活塞杆的前端固定工件时,请使活塞杆处于缩回至行程终点的状态,活塞杆平行部外露的部分用扳手紧固,需要注意避免紧固扭矩作用于缸体。

7. 双活塞杆·防回转型 SSD2-DM

■请勿对气缸两侧的活塞杆施加逆向的扭矩。否则可能会导致内部部件连接部松动,从而造成意外。 此外,负荷的拆装请在负荷安装侧的活塞杆对边宽度部固定的状态下进行,请勿对防回转导向部施加扭矩。

8. 两段型 SSD2-W

■ 请在取下安装在缸体的贯穿螺栓前端(活塞杆侧)的 螺母后进行安装。

用于固定气缸1、气缸2的螺母。并非安装用。

使用•维护时

1. 通用

▲警告

▲警告

- 前端盖的安装、拆卸请使用适当的钳子(C形挡圈安装工具)进行操作。
- 即便在使用了适当的钳子(C形挡圈安装工具)的情况下,挡圈也可能会从钳子(C形挡圈安装工具)的前端脱落、飞出,对人体和周边元件造成伤害,请予以注意。

此外,安装时请确认挡圈已切实装入挡圈槽后,再进行供气。

■ 设备维护时,为确保安全,请另行采取措施防止负

■ 在锁定状态下,如果在双侧气口无加压状态下向气

突然解除而使得活塞杆飞出,非常危险。

口A供给压力,可能会导致无法解除锁定、或锁定

要解除锁定机构时,请务必对气口B供给压力,在锁定机构

2. 防坠落型 SSD2-Q

不承受负荷的状态下进行解除。

荷因自重而坠落。

■ 快速排气阀加快下降速度的使用方法,有时气缸缸 体的动作会早于锁紧销的动作,从而导致无法正常

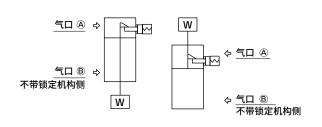
解除。防坠落型气缸请勿使用快速排气阀。

■ 通过外部缓冲装置(缓冲吸收器等)停止时,请调整至没有回弹为止。如果有回弹,导套与止动活塞会猛烈接触,会导致锁定机构破损。

此外,请每年实施1~2次的定期检查,以确认该现象是否导致保持部损伤。

▲注意

- 手动操作锁定机构后,请将锁定机构复原。此外, 因为存在危险,除调整时以外,请勿进行手动操作。
- 安装调整气缸时,请解除锁定。

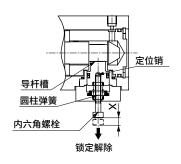

如果在锁定生效的状态下进行安装作业等,可能会损坏锁定 部。

■ 请勿同步使用多个气缸。

请勿采用使两个以上的防坠落型气缸同步以驱动1个工件的使用方法。有时可能会无法解除其中1个气缸的锁定。

■ 调速阀请在排气节流中使用。

进气节流控制时,有时会无法解除锁定。


个别注意事项

■ 带锁定侧请务必在气缸的行程终点使用。

如果气缸的活塞未到达行程终点,则可能会无法锁定,或无 法解除锁定。

■ 手动操作非锁定式解除方法

如果将内六角螺栓拧入止动活塞中,并以20N以上的力将螺栓拔出Xmm,则止动活塞会移动,从而解除锁定。(无负荷水平安装时或相反侧气口加压时)此外,如果松手,内置的弹簧导致定位活塞回到原位并进入活塞杆槽中,活塞将被锁定。

内六角螺栓尺寸和移动量

单位:mm

缸径	尺寸	移动量X
φ20	M3×20	3
φ25	M3×20	3
φ32	M3×20	3
φ40	M3×20	3
φ50	M4×30	3
φ63	M4×30	3
φ80	M4×30	3.5
φ100	M4×30	3.5

3. 低摩擦型 SSD2-U

▲注意

- 请勿拆解本产品。如果拆解,可能会无法维持性能。 此外,本产品不单独提供易损件。
- U系列中使用了氟类润滑脂,请注意如果在手上沾有的状态下吸烟等,会产生有害气体,可能会对人体造成损害。

SCP*3

CMK2

CMA2

SCM

SCG

SCA2

SCS2

CKV2

COVP/N2

SSD2

SSG

SSD

CAT

MDC2

MVC

SMG

MSD. MSDG

FC*

STK

SRL3

SRG3

SRM3

SRT3

MRL2

MRG2

SM-25

缓冲器

FJ

FK

调速阀