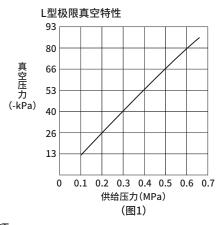
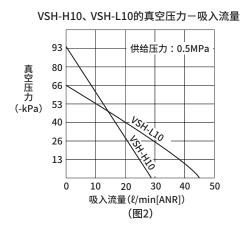
真空系统元件

真空发生器机型的选型方法


CKD真空发生器根据性能,基本分为H型:高真空型、L型: 大流量型(注重效率型)、E型: 低供给压力高真空型等3种,请根据使用状态进行选择。


●H(高真空型)型、E(低供给压力高真空型)型的区分需要高真空并可确保0.5MPa的供给压力时请使用H型,无法确保0.5MPa或想要节省耗气量时请在0.35~0.4MPa的条件下使用E型。

●H(高真空型)型、L(大流量型(注重效率型))型的区分需要高真空时使用H型,需调整真空压力时使用L型,并通过减压阀等调整供给压力,从而设置成所需的真空压力。 L型的真空压力特性与供给压力大致呈正比,0.2~0.6MPa时的设定如图1所示。可参考供给压力设定真空压力,但与目标值会产生约-5~+15%的偏差。

●吸盘未完全紧贴时

对于吸盘无法完全紧贴的工件,使用H型还是L型的判断标准取决于真空系统的真空压力。根据真空压力-吸入流量的图2,真空系统的真空压力为-53kPa以上时选择H型,为-40kPa以下时选择L型更佳。

其他注意事项

●使用阀

使用电磁阀等情况下,请选择足够流量的阀。 (请使用有效截面积为喷嘴截面积3倍以上的阀。)

●真空配管

真空系统的配管阻力会突然增大。真空配管请尽量缩短,并使用内径较粗的产品。尤其是使用真空开关等情况下,配管阻力过 大会导致误动作等。此外,发生器吸入流量过低时,还会因流量不足而导致性能降低等。

●供给侧配管

供气侧配管也请充分注意。配管时请确保发生器输入部可达到规定压力。

何谓真空

■何谓真空

比大气压高的压力状态一般称为"正压",比大气压低的压力状态称为"真空"、 "负压"。

真空压力

压力的含义大致分为2种:

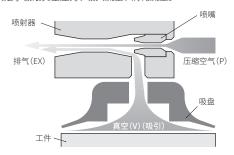
- •绝对压力…以完全真空状态为基准的压力
- •表压…以大气压为基准的压力。

真空压力不太高时,一般使用表压进行表示。

接近完全真空的高真空状态下,大气压为标准大气压时完全真空定义为-101.3kPa,但由于大气压(气压)随时变动,无法得知当时的完全真空压力,也无法使用表压进行表示。因此,高真空时一般使用绝对压力进行表示。本公司的真空发生器适用于低真空范围,产品使用表压表示真空压力。

大气压与真空压力

空气因为是物质存在重量。在地球上只要有重量就会因重力而受到吸引,大气也会因重力而受到吸引,产生靠近地表的力(重量)。这就是大气压,大气压即施加在单位面积上的大气重量所产生的力。


大气压会随着海拔的高低变化而变动。此外,也会因气象条件而随时变动。 就是说,使用表压时,海拔差异、气象条件会导致大气压不同,因此即使施加 相同的真空压力,海拔差异、气象条件也会导致压力表显示的数值不同。因此, 表压的数值采用换算成标准大气压的补偿值。

标准大气压按以海拔0m处的大气压为基准的数值来表示。 其换算方法如下所述。

标准大气压换算值(-kPa) = 1013.25(hPa) /测量位置的气压(hPa) ×实测极限真空压力(-kPa)

真空发生器的原理

- ■真空发生器是通过送入压缩空气产生真空的装置。
- ■压缩空气通过喷嘴节流后高速放出,流入喷射器中。高速喷流时,压力降低 并产生真空,可用于搬送工件。
- ■为了获得高速喷流实现高真空度,构建喷嘴、喷射器结构,其形状和尺寸的 不同决定了极限真空压力、吸入流量、消耗流量。

关于真空元件的标记单位

■真空元件的参数

真空元件的性能指标使用以下3个参数。

- ・极限真空压力…真空回路内的真空压力(单位:-kPa)
- ・吸 入 流 量…真空回路内的流量(单位: l/min(ANR))
- ·消 耗 流 量…供给空气的流量(单位: l/min(ANR))

■压力的参数

kPa	MPa	bar	kgf/cm ²	mmHg
1	1×10 ⁻³	1×10 ⁻²	1.01972×10 ⁻²	7.50062
1×10 ³	1	1×10	1.01972×10	7.50062×10 ³
1×10 ²	1×10 ⁻¹	1	1.01972	7.50062×10 ²
9.80665×10	9.80665×10 ⁻²	9.80665×10 ⁻¹	1	7.35559×10 ²
1.33322×10 ⁻¹	1.33322×10 ⁻⁴	1.33322×10 ⁻³	1.35951×10 ⁻³	1

■力的参数

_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
N	kgf
1	1.01972×10 ⁻¹
9.80665	1

真空系统元件

真空用元件的选型方法

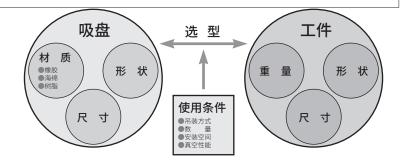
利用真空进行工件的吸附搬送时,请按照以下真空元件选型方法选择吸盘、真空发生器、真空切换阀。本真空元件的选型方法在选择元件时 仅供参考。实际使用时,请根据实物评估及型号选择时的注意事项进行充分确认,确认没有问题后再使用。

真空元件的选型方法

1. 吸盘的选择

- ① 吸附力的计算方法
- ②根据工件的吊装负荷计算吸盘直径的方法
- ③ 吸盘形状的选择
- ④ 吸盘材质的选择
- ⑤ 型号选择时的注意事项

2. 真空发生器、真空切换阀的选择


- ①各使用条件的收集
- ②选择步骤
- ③ 型号选择时的注意事项

1 ▶ 吸盘的选择

选择吸盘时需确定的大项目(吸盘、工件、使用条件)有右图所示的3点。

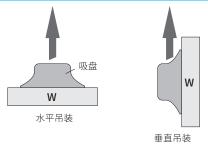
请充分理解后再选择吸盘。

吸盘尺寸(直径)通过计算吸盘的吸附力求得。

①吸附力的计算方法

●根据计算公式进行计算的方法

吸盘的吸附力可将数值带入下式中求得。


$$W = \frac{C \times P}{101} \times 10.13 \times f \\ \hspace{2cm} \text{W: 吸附力(N), C: 吸盘面积(cm²), P: 真空压力(-kPa)} \\ \hspace{2cm} \text{f: 安全率(水平吊装时:1/4以上,垂直吊装:1/8以上)}$$

●根据理论吸附力表进行选择的方法

吸盘的理论吸附力可根据下表求得。但下表数值未考虑安全率。计算吸附力时,请考虑安全率后再 使用。

吸附力(N)=理论吸附力(N)÷f(安全率)

① 理论吸附力表(吸附力= $\frac{C \times P}{101} \times 10.13$)

※一般请采用水平吊装的方法。

■圆形吸盘时

吸盘直径	(ømm)	0.7	1	1.5	2	3	4	6	8	10	15	20	25	30	35	40	50	60	70	80	100	150	200
吸附面积	R(cm²)	0.004	0.008	0.018	0.031	0.071	0.126	0.283	0.502	0.785	1.766	3.14	4.906	7.065	9.616	12.56	19.63	28.26	38.47	50.24	78.5	176.6	314
	-85	0.034	0.068	0.153	0.264	0.604	1.07	2.41	4.27	6.67	15.01	26.7	41.7	60.05	81.74	106.8	166.9	240.2	327	427	667.3	1501	2669
	-80	0.032	0.064	0.144	0.248	0.568	1.01	2.26	4.016	6.28	14.13	25.1	39.25	56.52	76.93	100.5	157	226.1	307.8	401.9	628	1413	2512
	-75	0.03	0.06	0.135	0.233	0.533	0.945	2.12	3.765	5.89	13.25	23.6	36.8	52.99	72.12	94.2	147.2	212	288.5	376.8	588.8	1325	2355
	-70	0.028	0.056	0.126	0.217	0.497	0.882	1.98	3.514	5.5	12.36	22	34.34	49.46	67.31	87.92	137.4	197.8	269.3	351.7	549.5	1236	2198
真空压力	-65	0.026	0.052	0.117	0.202	0.462	0.819	1.84	3.263	5.1	11.48	20.4	31.89	45.92	62.5	81.64	127.6	183.7	250.1	326.6	510.3	1148	2041
(kPa)	-60	0.024	0.048	0.108	0.186	0.426	0.756	1.7	3.012	4.71	10.6	18.8	29.44	42.39	57.7	75.36	117.8	169.6	230.8	301.4	471	1060	1884
	-55	0.022	0.044	0.099	0.171	0.391	0.693	1.56	2.761	4.32	9.713	17.3	26.98	38.86	52.89	69.08	108	155.4	211.6	276.3	431.8	971.3	1727
	-50	0.02	0.04	0.09	0.155	0.355	0.63	1.42	2.51	3.93	8.83	15.7	24.53	35.33	48.08	62.8	98.15	141.3	192.4	251.2	392.5	883	1570
	-45	0.018	0.036	0.081	0.14	0.32	0.567	1.27	2.259	3.53	7.95	14.1	22.08	31.79	43.27	56.52	88.34	127.2	173.1	226.1	353.3	794.7	1413
	-40	0.016	0.032	0.072	0.124	0.284	0.504	1.13	2.008	3.14	7.064	12.6	19.62	28.26	38.46	50.24	78.52	113	153.9	201	314	706.4	1256

■椭圆形吸盘时 单位:N

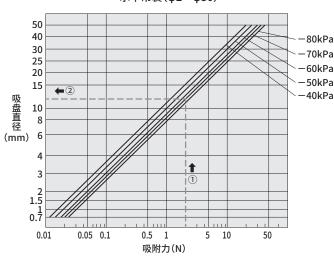
吸盘直径	(ømm)	4×10	4×20	4×30	5×10	5×20	5×30	6×10	6×20	6×30	8×20	8×30
吸附面积	只(cm²)	0.365	0.765	1.165	0.446	0.946	1.446	0.522	1.122	1.722	1.462	2.262
	-85	3.103	6.503	9.903	3.791	8.041	12.29	4.437	9.537	14.64	12.43	19.23
	-80	2.92	6.12	9.32	3.568	7.568	11.57	4.176	8.976	13.78	11.7	18.1
	-75	2.738	5.738	8.738	3.345	7.095	10.85	3.915	8.415	12.92	10.97	16.97
	-70	2.555	5.355	8.155	3.122	6.622	10.12	3.654	7.854	12.05	10.23	15.83
真空压力	-65	2.373	4.973	7.573	2.899	6.149	9.399	3.393	7.293	11.19	9.503	14.7
(kPa)	-60	2.19	4.59	6.99	2.676	5.676	8.676	3.132	6.732	10.33	8.772	13.57
	-55	2.008	4.208	6.408	2.453	5.203	7.953	2.871	6.171	9.471	8.041	12.44
	-50	1.825	3.825	5.825	2.23	4.73	7.23	2.61	5.61	8.61	7.31	11.31
	-45	1.643	3.443	5.243	2.007	4.257	6.507	2.349	5.049	7.749	6.579	10.18
	-40	1.46	3.06	4.66	1.784	3.784	5.784	2.088	4.488	6.888	5.848	9.048

1 ▶ 吸盘的选择

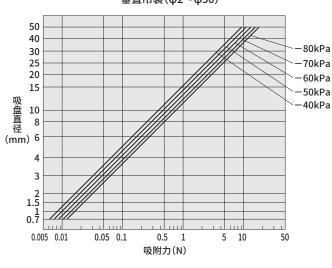
② 根据工件的吊装负荷计算吸盘直径的方法

●根据计算公式进行计算的方法

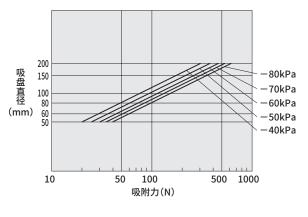
可根据实际所需的吸附力计算真空吸盘直径。

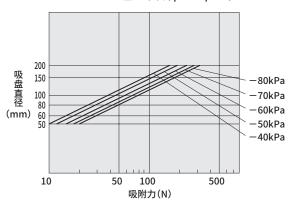

$$D = \sqrt{\frac{\frac{4}{3.14} \times \frac{1}{P} \times \frac{W}{n} \times \frac{1}{f} \times 1000}}$$

D:吸盘直径(mm)、n:相对于工件的吸盘数量、W:吸附力(N)、P:真空压力(-kPa)、f:安全率(水平吊装时:1/4以上、垂直吊装时:1/8以上)


●根据选型图表进行选择的方法

可根据所使用的吊装方法(垂直吊装、水平吊装)和每个真空吸盘所需的吸附力,通过下表计算吸盘直径。


选型图表 1-1 不同吸附力的吸盘直径选型图表 水平吊装(φ2~φ50)


选型图表2]-1 不同吸附力的吸盘直径选型图表 垂直吊装(φ2~φ50)

选型图表 1 - 2 不同吸附力的吸盘直径选型图表 水平吊装(φ50~φ200)

选型图表22-2 不同吸附力的吸盘直径选型图表 垂直吊装(φ50~φ200)

例(吸盘直径的选择)

计算工件重量为8N,使用条件为

- •吸盘数:4个
- ・真空压力: -70kPa
- · 吊装方法: 水平吊装

时的真空吸盘直径。

使用计算公式的计算方法

$$D = \sqrt{\frac{4}{3.14} \times \frac{1}{P} \times \frac{W}{n} \times \frac{1}{f} \times 1000} = \sqrt{\frac{4}{3.14} \times \frac{1}{70} \times \frac{8}{4} \times 4 \times 1000} = 12.06$$

因此,选择φ15mm以上的吸盘。

使用选型图表的计算方法

根据条件可知,每个吸盘的吸附力为2N(8N÷4个=2N)。

根据吊装方法为水平吊装(选型图表II)和可获得-70kPa的真空压力(选型图表横轴),判断相当于 φ12mm的吸盘直径较为合适。因此选择吸盘直径φ15mm以上的吸盘。(选型图表①的①→②的顺序)

③ 吸盘形状的选择

根据工件的形状、材质选择吸盘形状。需使用实样进行吸附试验时,请与附近的营业所协商。

	盘形状。需使用实样进行吸附试验时 		44. 7
吸盘形状 ● 普通型		5工件	特点
		适用于平整的工件(坚硬且较厚的工件)	 标准对应多种吸盘尺寸(18种φ1~φ200)和 吸盘材质(8种)
深凹型标准型		适用于球状工件(苹果及球)	・吸盘内侧较深,适用于球面及表面凸起的工 件
小型		适用于半导体零件	 为了应对小型半导体零件,备有φ0.7、φ1.0、φ1.5等小直径尺寸 备有多种吸盘材质(10种),适用于各种环境条件
海绵型		适用于建筑物的外墙材料、小型石材 及贝壳类工件	新増适用于食品相关工件的硅橡胶海绵
多段波纹型	\$222	适用于速食包装及食品等的包装袋	可在未安装弾簧式缓冲器及工件倾斜时使用新增适用于需防止吸痕的工件的加装型树脂 附件(波纹型用)
椭圆型		适用于基板、圆棒、半导体零件等长 形工件	・新増适用于小吸附面工件的小尺寸 (2×4、3.5×7)
柔软型			・吸盘柔软性优异,可吸附纸张等
柔软波纹型		适用于成形品的取出及易损伤的工件	・吸盘柔软性优异,可吸附纸张等・可在未安装弹簧式缓冲器及工件倾斜时使用
防滑型		适用于冲压部件等附着油份的工件	・吸盘吸附面设有夹紧槽,防止在搬送附着油 分的铁板时打滑
薄物用型		适用于复印纸、聚氯乙烯等薄型工件	通过薄化吸盘唇部,使之更紧贴工件,适用 于薄型工件,也可减少重复吸附吸盘面平整,不易产生皱折
扁平型		适用于薄板、聚氯乙烯等薄型工件	・ 采用扁平的工件吸附面,可在吸附时减少工 件的变形和皱折
防吸痕型		适用于液晶玻璃、涂装工序、 半导体制造设备等	・ 采用树脂吸盘,不易留下吸痕迹・ 支架标配柔性机构,与工件的适应性佳

1 ▶ 吸盘的选择

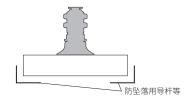
④ 吸盘材质的选择

根据使用条件、使用流体、环境选择合适的材质。主要特性请参阅下表。

■吸盘材质一览

									吸盘	:材质							
	橡胶材质								树脂材质								
		丁腈橡胶	硅橡胶	聚氨酯 橡胶	氟橡胶	氯丁橡胶	氟硅橡胶	HNBR	EPDM	静电扩散性硅橡胶	号电性橡胶 (低电阻型)	导电性NBR (低电阻型)	符合日本 食品卫生法 NBR	耐油NBR	PEEK	РОМ	导电性 PEEK
		N	S	U	F	无符号	FS	HN	EP	SE	Е	NE	G	NH	K	М	KE
高温使用	用极限温度	110°C	180°C	60°C	230°C	80°C	180°C	140°C	150°C	180°C	100°C	110°C	110°C	110°C	250°C	95°C	250°C
低温使用	用极限温度	-30°C	-40°C	-20°C	-10°C	-45°C	-50°C	-30°C	-40°C	-40°C	-50°C	-30°C	-30°C	-30°C	-50°C	-60°C	-50°C
耐候性		\triangle	0	0	0	0	0	0	0	0	0	Δ	\triangle	\triangle	0	0	0
耐臭氧物	±	×	0	0	0	0	0	0	0	0	×	Δ	×	×	_	_	_
耐酸性		\triangle	0	×	0	Δ	0	Δ	0	0	Δ	Δ	\triangle	Δ	0	×	0
耐碱性		0	0	×	×	0	0	0	0	0	0	0	0	0	0	0	0
耐油性	(汽油・轻油)	0	Δ	0	0	×	Δ	0	×	Δ	×	0	0	0	_	_	_
则油生	(苯•甲苯)	Δ	Δ	Δ	0	Δ	Δ	×	×	Δ	×	Δ	Δ	Δ	_	_	_
自润滑性	±	_	_	_	_	_	_	_	_	_	_	_	_	_	0	0	0
耐磨损怕	生	_	_	_	_	_	_	_	_	_	_	_	_	_	0	0	0
体积电阻	且率	_	_	_	_	_	_	_	_	10 ⁵ Ω・ cm以下	200Ω· cm以下	200Ω· cm以下	_	_	_	_	10 ⁵ ~ cm

评鉴的查看方法⇒◎;最适合、○;适合、△;良好、×;不适合


■根据吸盘材质、形状分类的主要用途

1123/	的双血仍	·质、形状		工女用人	77				:	推荐工件	、环境等	<u> </u>						
			 瓦楞 纸板	薄木板	铁板	食品相关	半导体	模具 成形品	薄型	化学药品环境	高温工件	低浓度 臭氧 环境下	要求耐光、耐臭氧	含水分环境下	表面凹凸	包装机械	电子元件	液晶制造装置
	丁腈橡	胶	0	0	0	0								0		0		
	硅橡胶					0	0	0	0		0	0		0		0		
	聚氨酯	橡胶	0	0	0							0				0		
	氟橡胶						0			0	0	0		0		0		
	氯丁橡	胶(海绵)				0								0	0			
	氟硅橡	胶						0			0	0		0		0		
槮	HNBR		0	0	0	0						0		0				
橡胶材质	EPDM											0	0	0				
吸盘材质	静电扩 橡胶	散性硅				0	0	0	0		0			0		0	0	
页	导电性 (低电)						0										0	
	导电性 (低电)		0	0	0	0								0		0	0	
	符合日 卫生法		0	0	0	0								0				
	耐油NI	3R	0	0	0	0								0		0		
树	PEEK						0							0				0
树脂材质	РОМ											0		0		0		
质	导电性	PEEK					0							0			0	0
		普通型	0	0	0		0			0	0						0	
	标准	深凹型				0	0			0	0							
		小型					0			0	0	0	0	0			0	
	海绵					0	0								0			
	波纹		0	0	0	0	0			0	0	0	0	0			0	
吸	多段波	纹	0	0	0	0	0			0	0	0	0	0				
吸盘形状	椭圆		0	0	0	0	0			0	0						0	
状	柔软						0	0									0	
	柔软波	纹	0	0	0		0	0				0	0	0				
	防滑		0	0	0	0	0	0		0	0							
	薄物用		0	0	0	0	0	0	0	0	0					0		
	扁平					0	0		0	0	0					0		
	防吸痕						0									0	0	0

⑤ 型号选择时的注意事项

△ 注意 1.选择吸盘的注意事项

●若担心吸附物(工件)掉落会造成危险, 请设置并实施防止掉落的安全对策。

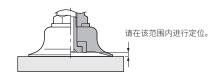
●吊装方法一般采用水平吊装,选择时请设立足够的安全率。

- ●计算吸附力时除了工件重量外,请考虑加速度、冲击后进行选择。
- ●设定吸盘直径、吸盘数及吸附位置时,请充分理解正文中的吸附力,考虑充分余量后再选择。
- ●请根据使用环境、使用方法,参考正文中的选型方法选择吸盘材质。
- ●不同的吸附物及吸附物形状对应不同的吸盘形状(类型),请仔细阅读选型方法后进行选择。

▲ 注意 2. 吸盘使用条件的注意事项

●真空回路中1台真空源配备2个以上的吸盘时,如1个吸盘吸附不良(泄漏),其他吸盘可能会因真空压力降低而导致工件脱落。

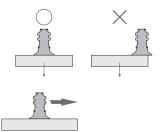
对策 1.防坠落阀


2.针阀

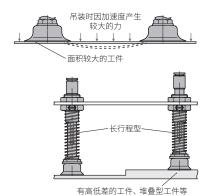
3.真空切换阀

设置上述阀时可有效应对。

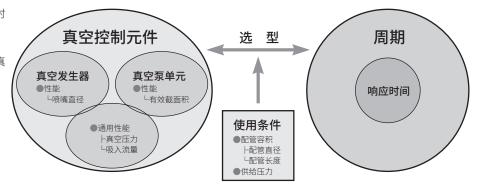
此外,使用真空泵时除上述3项外,设置腔室(罐)也十分有效。


●吸附工件时,请勿对吸盘施加过大的冲击、负荷。 否则会导致吸盘的耐久性大幅降低。 作为大致标准,建议以唇部的变形范围或轻轻接触的程度进行设定。

●吸盘吸附工件的位置。 请采用不会产生力矩的安装方法。


●安装时请避免吸盘超出工件。 否则真空度降低时,工件可能会掉落。

- ●请尽量减小工件横向移动的加速度。 否则在部分摩擦系数下,工件可能会横向滑动。
- ●使用玻璃板、装配电路板等面积较大且较薄的工件时,请充分考虑吸盘的配置、 移动加速度后再使用。


吸盘受配置位置、加速度的影响,可能会导致工件变形、损坏。

- ●在工件可能会掉落的使用环境下,请使用防坠落导杆等辅助部件。
- ●弹簧式支架、长行程式支架适用于高低参差或易因外力而破损的吸附物的吸附。

2 ▶ 真空发生器、真空切换阀的选择

选择真空发生器、真空泵适用单元时 需确定的大项目(真空控制元件、周 期、使用条件)有右图所示的3点。 请充分理解后再选择真空发生器、真 空切换阀。

①各使用条件的收集

A. 真空配管容积

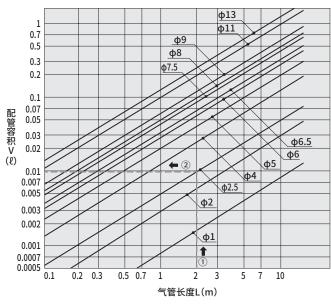
●根据计算公式进行计算的方法

真空系统的配管容积可将数值带入下式中求得。

D:配管内径(mm)

L: 真空发生器及切换阀至吸盘的长度(m)

 $V = \frac{3.14}{4} D^2 \times L \times \frac{1}{1000}$


V: 真空发生器及切换阀至吸盘的配管容

●根据选型图表进行选择的方法

■计算真空系统气管的配管容积

配管容积可根据下表求得。

选型图表③ 不同气管内径的配管容积

B. 真空控制元件的信息

真空控制元件(真空发生器、真空泵适用单元)的代表性能(信息)如下所述。 (详细信息请参阅样本正文中的发生器特性。)

●真空发生器(VSH、VSU、VSB、VSC)

真空特性一览

喷嘴直径	高真空	型:H	大流量	型:L	低供给压力高真空型:E			
(mm)	真空压力 (kPa)	吸入流量 (l/min(ANR)	真空压力 (kPa)	吸入流量 (l/min(ANR)	真空压力 (kPa)	吸入流量 (l/min(ANR)		
0.3	-90	2	-66	3~4	-88	1		
0.4	-90	4	-66	7~7.5	-90	2		
0.5	-90	7	-66	12	-90	3		
0.7	-92~-93	12.5~13	-66	22~26	-90~-92	10~10.5		
1	-93	28	-66	42	-92	21		
1.2	-93	38	_	_	-92	27		
1.5	-93	63	-66	95	-92	42		
2	-93	110	-66	180	-92	84		

- ※1.高真空型(H)、大流量型(L)的供给压力为0.5MPa, 低供给压力高真空型(E)的供给压力为0.35MPa。
- ※2.需要上述以外的真空发生器时,请参阅样本正文。

●真空泵适用单元

真空泵适用切换阀的有效截面积一览

类型	有效截面积(mm²)								
关至	真空供给用电磁阀								
VSJP	PV口规格	ф4mm	3.5						
VOJE	PV口XX伯	ф6тт	5						
VSXP	PV口规格	ф4mm	3.5						
VSAP	PV口XX省	ф6тт	4.5						
VSXP-T	PV口规格	ф4mm	3						
V3XP-1	PVロが倍	ф6тт	3.6						
VSZPM	4.5								
VSQP	16.5								
VSNP	0.9								

▶计算气管内径φ2.5mm(气管外径φ4mm)、气管长度2m的气管容积。

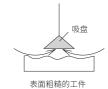
使用计算公式的计算方法。

$$V = \frac{3.14}{4} D^2 \times L \times \frac{1}{1000} = \frac{3.14}{4} \times 2.5^2 \times 2 \times \frac{1}{1000} = 0.0098 \approx 0.01(\ell)$$

使用选型图表的计算方法

从横轴气管长度2m与气管内径φ2.5mm(气管外径φ4mm)的曲线交点向左延长, 计算出纵轴的配管容积≈0.01ℓ。

配管容积≈0.01ℓ


①各使用条件的收集

①. 有泄漏量时的考虑方法

吸盘与工件之间发生泄漏时,需考虑该因素将响应时间数值化后再选择真空控制元件。 此外,有泄漏量时真空压力也必定会降低,因此需同时考虑该因素。

实际使用时,部分工件也会产生泄漏,从而导致真空压力降低。 选择真空发生器、真空切换阀时,也需考虑该泄漏量。

具有透气性的工件

下面介绍"已知工件有效截面积时计算泄漏量的方法"和"通过吸附测试计算泄 漏量的方法"等2种方法。

●已知工件有效截面积时计算泄漏量的方法

已知工件与吸盘开口部的有效截面积(SL)时,可根据下式计算泄漏量。

泄漏量 QL = 11.1 × SL

QL: 泄漏量(l/min(ANR))

SL: 工件与吸盘之间的间隙及工件开口部的有效截面积(mm²)

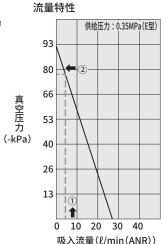
根据求出的泄漏量、使用的真空发生器和真空泵的流量特性曲线图,可预测表 压下降的程度值。

使用真空发生器(VSC-E12),工件与吸盘开口部的有效截面积为0.4mm² 时,计算实际可确保的真空压力。

要点

已知工件与吸盘开口部的有效截面积,因此可通过计算公式计算泄 漏量。

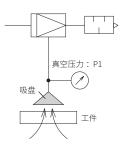
$Q_L = 11.1 \times S_L = 11.1 \times 0.4 = 4.4 \ell/min(ANR)$


根据所用真空发生器的流量特性,计算实际的真空压力。

根据上述泄漏量的计算公式

$Q_L = 11.1 \times S_L = 11.1 \times 0.4 = 4.4 \ell/min (ANR)$

根据VSC-E12的流量特性

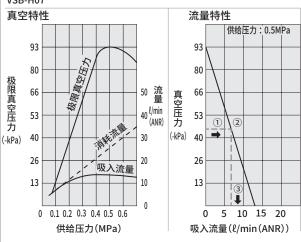

(右图),可预测发生4.4l/min (ANR)的泄漏时可获得真空压力 -77kPa。

※VSC-E12样本记述的真空压力为一90~-92kPa,但根据工件与真空吸盘开口部的 有效截面积,可得知实际真空压力将降低至-77kPa,因此请考虑工件与吸盘开口 部的有效截面积, 再选择直空元件。

●通过吸附测试计算泄漏量的方法

不清楚工件与吸盘开口部的有效截面积时,请进行实物试验,按照下图所示 的方法实际测量该泄漏量。

例

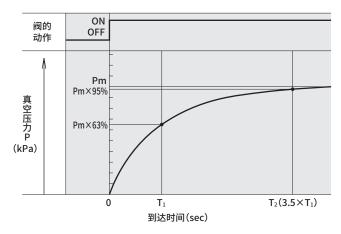

供给压力0.5MPa时,使用真空发生器(VSB-H07)吸附有泄漏的工件,真 空表的压力显示为-45kPa。计算该工件的泄漏量。

根据真空发生器VSB-H07的流量特性,计算出一45kPa时的吸入流量约 为7ℓ/min(ANR)。

(①→2→3的顺序)

泄漏量≈7ℓ/min(ANR)

VSB-H07


※关于上述VSB-H07以外的真空发生器的流量特性,请参阅正文中各产品的特性。

2 ▶ 真空发生器、真空切换阀的选择

② 选择步骤

A. 计算响应时间(无泄漏时)

真空控制元件、使用条件明确时,可根据该信息将粗略的响应时间(参考值)数值化。

Pm: 最终真空压力 T1: 到达最终真空压力Pm的63%的时间

T2: 到达最终真空压力Pm的95%的时间

●根据计算公式进行计算的方法

吸附响应时间 T_1 、 T_2 可根据下式进行计算。

吸附响应时间 $T_1 = \frac{V \times 60}{Q}$

吸附响应时间 $T_2 = 3.5 \times T_1$

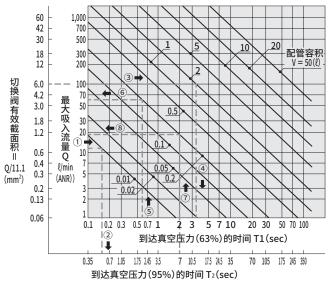
T1: 到达最终真空压力Pm的63%的时间(sec)

T₂: 到达最终真空压力P_m的95%的时间(sec)

V: 真空发生器、切换阀至吸盘的配管容积(l)

Q: 平均吸入流量(l/min(ANR))

平均吸入流量的计算方法


真空发生器▶Q = (1/3) ×真空发生器最大吸入流量(ℓ/min(ANR))

真空泵▶Q=(1/2)×11.1×切换阀有效截面积(mm²)

●根据选型图表计算的方法

吸附响应时间T1、T2可根据下表求出。

图表4 吸附响应时间

※根据吸附响应时间,也可逆向求出真空发生器的尺寸及真空泵系统的切换阀尺寸。

例①

计算使用真空发生器(VSU-H07)的最大吸入流量12ℓ/min(ANR),使配管容积0.01ℓ的配管系统内压力达到最终真空压力-87kPa时的吸附响应时间。

要点

参考卷头28的计算公式及选型图表33,计算配管容积。

$-87kPa \approx -92(kPa) \times 95(\%)$

可通过求取上式的吸附响应时间 T_2 进行计算。 此外,平均吸入流量使用卷头28的真空特性一览和 $Q=(1/3)\times 12=1/3\times 12=4\ell/min(ANR)$ 。

使用计算公式的计算方法

$$T_1 = \frac{V \times 60}{Q} = \frac{0.01 \times 60}{4} = 0.15 (sec)$$

实际求得的时间为

 $T_2 = 3.5 \times T_1 = 3.5 \times 0.15 = 0.525 (sec)$

得知吸附响应时间需要约0.5(sec)。

使用选型图表的计算方法

可根据真空发生器(VSU-H07)的最大吸入流量 $12\ell/\min$ (ANR)与配管容积 0.01ℓ 的交点,求出到达最高真空压力的95%的吸附响应时间 T_2 。(选型图表团的① \rightarrow ②的顺序)

 $T_2 \approx 0.5 (sec)$

例2

计算使用有效截面积6mm²的阀使2l的罐内压力上升至最终真空压力的63%时的吸附响应时间。

使用计算公式的计算方法

$$T_1 = \frac{V \times 60}{1/2 \times 11.1 \times S} = \frac{2 \times 60}{1/2 \times 11.1 \times 6} = \frac{120}{33.3} = 3.6 (sec)$$

使用选型图表的计算方法。

可根据阀有效截面积6mm²与配管容积2ℓ的交点,求出到达最高真空压力的63%的响应时间T₁。

(选型图表图的3→④的顺序)

T₁≈3.5(sec)

[空系统元件

B. 真空发生器、真空泵适用单元的选择

响应时间、使用条件明确时,可根据该信息选择最佳的真空发生器、真空泵适用单元。

1. 真空发生器、真空切换阀的尺寸(无泄漏时)

●使用计算公式的方法

a 平均吸入流量

$$Q = \frac{V \times 60}{T_1}$$

 $T_2=3.5\times T_1$

Q: 平均吸入流量(l/min(ANR))

Q・ 〒2000人加車(7) | V: 配管容积(2) Tı: 到达吸附后稳定压力P的63%的时间(sec) T₂: 到达吸附后稳定压力P的95%的时间(sec)

⑤最大吸入流量(真空元件的规定吸入流量) 真空发生器▶Qmax = 3 × Q [ℓ/min(ANR)] 真空泵▶Qmax = 2 × Q [ℓ/min(ANR)]

要点 -

■真空发生器

需选择吸入流量大于上式Qmax的真空发生器。

■真空切换阀

有效截面积
$$S = \frac{Qmax}{11.1} (mm^2)$$

※需选择大于上式有效截面积的切换阀。

●使用选型图表的方法

a 气管容积

使用选型图表③(卷头28)"不同气管内径的配管容积"进行计算。

□ 最大吸入流量Qmax

使用选型图表 $\Phi(8,300)$ "吸附响应时间",根据吸附响应时间 $\Phi(T_1,T_2)$ 和气管容积, 计算所需的最大吸入流量Q。

要点

■真空发生器

需选择最大吸入流量大于根据图表得出的Q的真空发生器。

■真空切换阀

需选择阀的有效截面积大于根据图表得出的值的真空切换阀。

例

需使用配管容积0.2ℓ的储罐,经0.6秒左右到达真空压力-58kPa时,如 何选择真空发生器。(确保0.5MPa的供给压力)

要点

 $-58kPa = -93(kPa) \times 63(\%)$

此外,根据可确保0.5MPa的供给压力并对比本公司样本值,应选择"H 型"较为合适。

使用计算公式的计算方法

■■■ 根据平均吸入流量的计算公式

$$Q = \frac{V \times 60}{T^1} = \frac{0.2 \times 60}{0.6} = 20$$

■□根据最大吸入流量的计算公式

$Qmax=3\times Q=3\times 20=60\ell/min(ANR)$

根据上述计算公式,得知选择真空发生器的吸入流量为60l/min(ANR) 的产品较为合适。

使用选型图表的计算方法

可根据吸附响应时间0.6秒与配管容积0.20的交点,求出最大吸入流量。 (选型图表图的⑤→⑥的顺序)

 $0 \approx 60 \ell / min (ANR)$

※根据上述要点已得知"H型"较为合适,对比本公司样本值,根据选型图表可知 H15(吸入流量:63l/min(ANR))"的真空特性最佳。

2 ▶ 真空发生器、真空切换阀的选择

② 选择步骤

B. 真空发生器、真空泵适用单元的选择

2.真空发生器、真空切换阀的尺寸(有泄漏时)

工件有泄漏时,可对最大吸入流量加上泄漏量,从而求得所需真空发生器、真空切换阀的尺寸。

●使用计算公式的方法

a 加上泄漏量的平均吸入流量

$$Q = \frac{V \times 60}{T_1} + Q_L$$

 $T_2 = 3.5 \times T_1$

- O: 平均吸入流量(l/min(ANR))
- V: 配管容积(l)
- T1: 到达吸附后稳定压力P的63%的时间(sec)
- T2: 到达吸附后稳定压力P的95%的时间(sec)
- O₁: 吸附工件时的泄漏量(*l*/min(ANR))

b 最大吸入流量(真空元件的规定吸入流量)

真空发生器▶ $Qmax = 3 \times Q[\ell/min(ANR)]$ 真空泵▶ $Qmax = 2 \times Q[\ell/min(ANR)]$

要点

■真空发生器

需选择吸入流量大于上式Qmax的真空发生器。

■真空切换阀

有效截面积
$$S = \frac{Qmax}{11.1} (mm^2)$$

※需选择有效截面积大于上式S的切换阀。

●使用选型图表的方法

a 气管容积

使用选型图表③(卷头28)"不同气管内径的配管容积"进行计算。

b 最大吸入流量Qmax

使用选型图表I(卷头30页)"吸附响应时间",根据吸附响应时间I(I)、I2)和气管容积,计算不含泄漏量I2。

最大吸入流量

真空发生器▶Qmax = Q + (2 × QL)

真空泵▶Qmax = Q + $(3 \times Q_L)$

- Q:根据选型图表国(卷头30)求出的最大吸入流量(l/min(ANR))
- QL:泄漏量(ℓ /min(ANR))(卷头29)2-②根据吸附工件时有泄漏情况下的考虑方法,数值化后的值

要点 -

■真空发生器

需选择最大吸入流量大于根据图表得出的Q的真空发生器。

■真空切换阀

需选择阀的有效截面积大于根据图表得出的值的真空切换阀。

何

需满足工件与真空吸盘开口部的泄漏量4.4ℓ/min(ANR)、配管容积0.2ℓ。 吸附后达到稳定压力Pm的95%的时间为7sec。 如何选择真空发生器。

要点 -

配管容积请参考卷头28"使用条件的提取"中的例题,吸附工件后的泄漏量请参考卷头29"有泄漏量时的考虑方法"。

使用计算公式的计算方法

根据 $T_2 = 3.5 \times T_1$,

$$T_1 = \frac{T_2}{3.5} = \frac{7}{3.5} = 2 \text{(sec)}$$

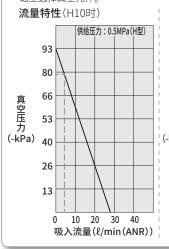
$$Q = \frac{V \times 60}{T_1} + Q_L = \frac{0.2 \times 60}{2} + 4.4 = 10.4(\ell/min(ANR))$$

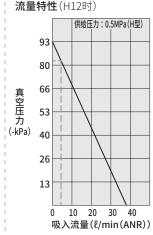
因此,最大吸入流量为

$Qmax = 3 \times Q = 3 \times 10.4 = 31.2\ell/min(ANR)$

根据上述计算公式,得知选择吸入流量的性能为31.2ℓ/min (ANR) 以上的真空发生器较为合适。

使用选型图表的计算方法 -


可根据真空压力(95%)到达时间7sec与配管容积0.2ℓ的交点,计算最大吸入流量。(卷头30页选型图表图的②→⑧的顺序)


O≈20ℓ/min(ANR)

 $Qmax = 20 + (3 \times 4.4) = 33.2\ell/min(ANR)$

<补 充>

※最大吸入流量约为33ℓ/min (ANR))、可确保供给压力0.5MPa时,高真空型(H型)的喷嘴直径φ1mm或φ1.2mm适用,但工件与真空吸盘开口部的泄漏量为4.4ℓ/min (ANR)时,根据下图的流量特性,H10时的最大真空压力为-79kPa、H12时为-83kPa,因此需在考虑所需最大压力的基础上选择真空元件。

③ 型号选择时的注意事项

- ●请注意避免供给空气、供电电源故障导致的真空压力降低。
- ●吸附力降低可能会导致吸附物掉落,因此请采取安全措施。
- ●发生器供给空气请使用去除冷凝水及异物的洁净空气。此外,请勿使用油雾器给油。压缩空气中含有的不纯物、油可能会导致动作不良、性能降低。
- ●发生器的供给压力(正文规格值)为发生器动作时的值。考虑到压力下降,请确保正文规格值。未满足规格值时,在特定供给压力下发生器会产生异响,特性不稳定,并可能会对传感器等产生影响,从而引发故障。
- ●带真空保持功能型及带单向阀功能型允许真空泄漏,因此需长时间保持真空时请另行采取安全措施。
- ●对阀长时间连续通电会导致线圈发热。发热可能会导致产品寿命缩短、动作故障等。此外,发热可能会导致烫伤及影响关联元件。
- ●使用集成规格时,集成连数、装载单元的组合可能会导致性能降低或影响其它工作站的真空口。

▲ 注意 2. 选择真空发生器喷嘴直径的注意事项

●发生器供给压力侧的有效截面积请以喷嘴直径截面积3倍的有效截面积为大致标准选择配管和元件。供给流量不足会导致性能降低。

⚠ 注意 3. 选择真空线用元件的注意事项

●请根据真空源的最大流量选择关联元件。

此外,关于关联元件的有效截面积,请在计算

S(有效截面积)=Qmax(最大流量: l/min(ANR))/11.1(mm²)的基础上,

根据合成有效截面积进行计算,从而选择元件。

注).该公式为适用于真空线的参考公式,不适用于正压线。

此外,对正压线进行计算时,请套用以下公式。

■MPa单位 P₁>1.89P₂

$$Q = 113 \times S \times P_1 S = \left(\frac{Q}{113 \times P_1} \right)$$

■kgf/cm²单位 P₁>1.89P₂

$$Q = 11.1 \times S \times P_1 S = \left(\frac{Q}{11.1 \times P_1}\right)$$

 P_1 : 一次侧绝对压力 P_2 : 二次侧绝对压力

▲ 注意 4. 选择真空过滤器的注意事项

●严禁对真空过滤器施加真空破坏用的正压。因其并非防爆结构,且耐压性低,可能会因本体破损导致人体受伤。

↑ 注意 5. 真空元件使用条件的注意事项

- ●使阀动作时,请确认泄漏电流在1mA以下。否则,泄漏电流可能会导致误动作。
- ●请勿采用对真空发生器、真空泵单元的真空回路侧长时间施加0.1MPa以上压力的使用方法。真空元件并非防爆结构,可能会导致本体破损。
- ●真空回路中1台发生器配备2个以上的吸盘时,如1个吸盘吸附不良(泄漏),其他吸盘可能会因真空压力降低而导致工件脱落。
- ●请勿采用会堵塞发生器排气口或排气阻力会加大的使用方法。否则会导致不发生真空或真空压力降低。