控制回路

LCM

LCR LCG

LCX STM

STR2 UCA2 ULK** JSK/M2 JSG JSC3+JSC4 USSD

UFCD USC

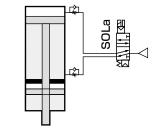
UB JSB3

LMB LML HCM

LBC CAC4 UCAC2 CAC-N UCAC-N RCS2 RCC2 PCC

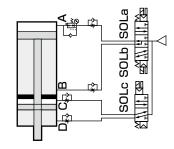
SHC

MCP GLC


MFC BBS

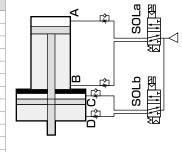
RRC GRC RV3* NHS HRL

LN 卡瓜 卡盘 机械卡爪 缓冲器 FJ FK 速控制器

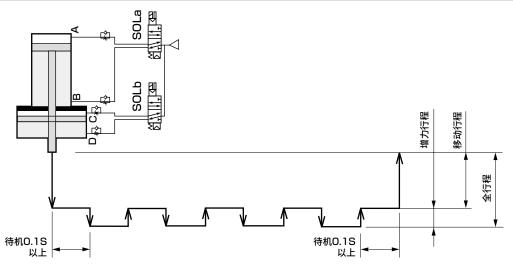

卷末

● 标准 SHC·SHC-K(回路1)

使用与普通气缸相同的驱动方式。


● 增力部单独控制用回路 SHC-A(回路2)

电磁阀	移动行程		增力行程
动作状态	SOLa	SOLb	SOLc
移动行程前进	ON	OFF	OFF
移动行程端	OFF	OFF	OFF
待机O.1秒以上	OFF	OFF	OFF
增力行程前进	ON	OFF	ON
增力行程后退	OFF	OFF	OFF
待机O.1秒以上	OFF	OFF	OFF
移动行程后退	OFF	ON	OFF


(注)请在移动气缸前进侧(A气口)安装可逆流减压阀进行减压,保持A气口和B气口侧的平衡状态。 否则会导致增力气缸后退时动作不良。

● 增力部单独控制用回路 SHC-K-A(回路3)

电磁阀	移动行程	增力行程
动作状态	SOLa	SOLb
移动行程前进	ON	OFF
移动行程端	ON	OFF
待机0.1秒以上	ON	OFF
增力行程前进	ON	ON
增力行程后退	ON	OFF
待机0.1秒以上	ON	OFF
移动行程后退	OFF	OFF

增力部单独控制动作图

※电磁阀的选型与以往缸径的选择相同。

注1:集成使用时,在向上的负荷作用下,D气口的排压可能会迂回至B气口,因此请使用单独排气隔板。 此外,请使用单体进行控制。

技术资料

LCR

LCG

LCX

STM STG

STR2

UCA2

JSK/M2

JSC3+JSC

USSD

UFCD

USC

JSB3

HCM HCA LBC CAC4

UCAC2 CAC-N UCAC-N RCS2 RCC2 PCC SHC MCP GLC MFC BBS RRC

NHS HRL LN 卡爪

缓冲器 FJ FK 速 速 料器 卷末

UB

耗气量(标准状态时)

A)单纯往复动作时

(1) 1次往复的空气消耗量 ... S₁ ... S₂

$$V=Q_1\times\frac{S_1}{100}+Q_2\times\frac{S_2}{10}$$

(2) 1分钟的空气消耗量

$$Q=V\times N=(Q_1\times \frac{S_1}{100}+Q_2\times \frac{S_2}{10})\times N$$

B) 高循环动作时

(1) 1次往复的空气消耗量

$$V=Q_1 \times \frac{S_1}{100} + Q_2 \times \frac{S_2}{10} \times n$$

(2) 1分钟的空气消耗量

$$Q=V\times N=(Q_1\times \frac{S_1}{100}+Q_2\times \frac{S_2}{10}\times n)\times N$$

V: 1次往复的空气消耗量 Q: 1分钟的空气消耗量

٤ (ANR)

ℓ/min(ANR)

Q₁: 移动行程部的耗气量(表1) ℓ(ANR)

Q2: 增力行程部的耗气量(表2) ℓ(ANR)

S1:全行程

mm

S2:增力行程

mm

N:每分钟的全行程往复动作次数

cpm

n:增力行程的往复动作次数

循环

表1.移动行程部的耗气量(SHC、SHC-K通用)

		行程每100mm往复1次的耗气量:Q₁ℓ (ANR)						
缸径(mm)				使用压力	MPa			
	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
φ40	0.60	0.80	1.00	1.20	1.40	1.60	1.80	2.00
φ50	0.96	1.28	1.59	1.91	2.23	2.55	2.87	3.18
φ63	1.57	2.09	2.61	3.13	3.65	4.17	4.69	5.21
φ80	2.62	3.48	4.35	5.22	6.09	6.96	7.83	8.69
φ100	4.09	5.44	6.80	8.16	9.52	10.87	12.23	13.59

表2.增力行程部的耗气量

		行程每100mm往复1次的耗气量:Q₂ℓ(ANR)							
缸径(r	nm)	使用压力 MPa							
		0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9
	φ40	0.08	0.11	0.14	0.17	0.20	0.22	0.25	0.28
S 2	φ50	0.14	0.19	0.23	0.28	0.33	0.37	0.42	0.47
S 2 H C	φ63	0.20	0.26	0.33	0.39	0.46	0.52	0.59	0.65
C 7	φ80	0.28	0.38	0.47	0.56	0.66	0.75	0.85	0.94
	φ100	0.42	0.56	0.70	0.84	0.98	1.12	1.26	1.41
	φ40	0.27	0.35	0.44	0.53	0.62	0.71	0.80	0.88
S 4 H	φ50	0.42	0.56	0.70	0.84	0.98	1.12	1.26	1.40
Ç C 倍	φ63	0.66	0.88	1.10	1.33	1.55	1.77	1.99	2.21
ー K カ	φ80	1.10	1.47	1.83	2.20	2.56	2.93	3.29	3.66
	φ100	1.73	2.30	2.87	3.45	4.02	4.59	5.16	5.74

计算示例

例1.单纯往复动作

型号: SHC-00-63H-300-20

全行程S1=300mm

增力行程S2=20mm

使用压力=0.5MPa

每分钟的全行程往复动作次数N=10cpm

(1)1次往复的空气消耗量

$$V=3.13\times\frac{300}{100}+0.39\times\frac{20}{10}=10.17 \,\ell \text{ (ANR)}$$

(2)1分钟的空气消耗量

Q=10.17×10=101.7 ℓ /min(ANR)

例2.高循环动作

型号: SHC-00-63H-300-20

全行程S1=300mm

增力行程S2=20mm

使用压力=0.5MPa

每分钟的全行程往复动作次数N=1cpm

增力行程的往复动作次数n=10次循环

(1)1次往复的空气消耗量

$$V=3.13\times\frac{300}{100}+0.39\times\frac{20\times10}{10}=17.19\ell$$
 (ANR)

(2)1分钟的空气消耗量

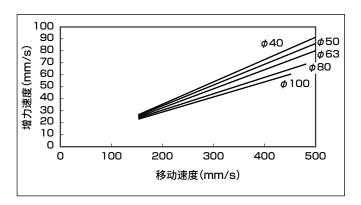
Q=17.19×1=17.19 \(\text{/min(ANR)} \)

移动速度和增力速度的关系计算方法

标准型

符号

Sz:增力速度(mm/s)


Si: 移动速度(mm/s)

a:系数

b:初速度(移动速度50mm/s时)(mm/s)

SHC 供给压力O.5MPa时的计算公式

增力速度计算公式(mm/s) 缸径(mm) Sz=a(Si-50)+b			动速度 1/s)
	(50≤Si≤最大移动速度)	0.5[MPa]	0.9 [MPa]
φ40	Sz=0.186(Si-50)+7.2	540	640
φ50	Sz=0.173(Si-50)+8	520	620
φ63	Sz=0.157(Si-50)+9	510	610
φ80	Sz=0.135(Si-50) + 10.3	480	570
φ100	Sz=0.123(Si-50) + 11.1	450	540

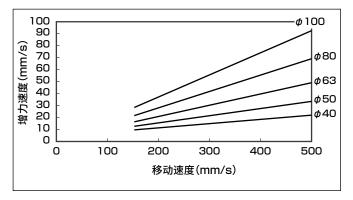
此外,压力每增加O.1 [MPa],移动速度、增力速度变化5%左右。

•计算公式示例

使SHC-00-63H-300-20的气缸以压力0.5[MPa]、移动速度500[mm/s]动作时的增力速度。

根据上述计算公式,

 $Sz=0.157 \times (500-50) + 9 = 79.6 (mm/s) \approx 79 (mm/s)$


压力为0.8[MPa]时, 0.1[MPa]左右变化5%, 因此Sz'=1.15×Sz=91.6(mm/s)≈91(mm/s)

使用最大移动速度时也是一样,每上升0.1[MPa]变化5%左右,因此SiMAX= $1.2\times$ Si=612(mm/s) \approx 610(mm/s)

以下所示型号也采用与以上同样的计算方法。

SHC-K 供给压力O.5MPa时的计算公式

缸径(mm)	增力速度计算公式(mm/s) Sz=a(Si-50)+b	最大移 (mn	动速度 1/s)
	(50≤Si≤最大移动速度)	0.5[MPa]	0.9 [MPa]
φ40	Sz=0.0149(Si-50)+2.3	540	640
φ50	Sz=0.025(Si-50)+2.6	520	620
φ63	Sz=0.0381 (Si-50) +2.9	510	610
φ80	Sz=0.0553(Si-50)+3.3	480	570
φ100	Sz=0.0756(Si-50)+3.9	450	540

LCR LCG LCW LCX STM STG STS+STL STR2

LCM

UCA2
ULKX
JSK/M2
JSG
JSG3-JSC4
USSD
UFCD
USC
UB
JSB3
LMB
LML
HCM

LBC

CAC4
UCAC2
CAC-N
UCAC-N
RCS2
RCC2
PCC
SHC
MCP
GLC
MFC
BBS
RRC
GRC
RV3**
NHS

HRL LN

卡爪

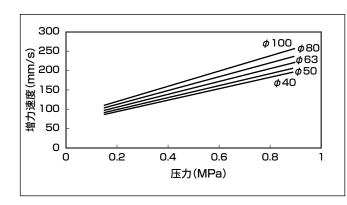
卡盘 机械卡爪· 卡盘 缓冲器

FJ FK 速度 控制器 卷末

技术资料

增力部单独控制型

增力气缸部单独进行往复动作,因此增力速度会因供给压力而异。


符号

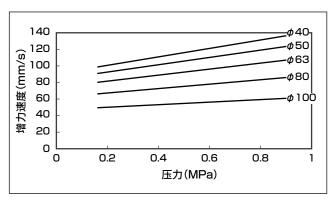
Sz:增力速度 (mm/s) P:压力(MPa) c:系数

d :增力速度系数 (mm/s)

SHC-A

缸径(mm)	增力速度计算公式(mm/s) Sz=cP+d (0.15≤P≤0.9[MPa])
φ40	Sz=144P+67.3
φ50	Sz=152.1P+69.8
φ63	Sz=162.7P+73
φ80	Sz=176.6P+77.3
φ100	Sz=193P+82.3

• 计算公式示例


使SHC-00-40-300-20-A的气缸以压力0.5[Mpa]动作时的增力速度。 根据上述计算公式,

 $Sz=144\times0.5+67.3=139.3 (mm/s) \approx 139 (mm/s)$

以下所示型号也采用同样的计算方法。

SHC-K-A

缸径(mm)	增力速度计算公式(mm/s) Sz=cP+d (0.15≤P≤0.9[MPa])
φ40	Sz=48.4P+92.6
φ50	Sz=42.7P+85.3
φ63	Sz=35.2P+75.7
φ80	Sz=25.5P+63.2
φ100	Sz=14.1P+48.6

LCM LCR LCG LCW LCX STM STG STS·STL STR2 UCA2 ULK**/ JSK/9 JSG3-JSC4 USSD UFCD

USC

UB
JSB3
LMB
LML
HCM
HCA
LBC
CAC4
UCAC2
CAC-N
RCS2
RCC2
PCC
SHC

MCP

GLC MFC BBS RRC GRC RV3** NHS HRL LN 卡盘 和擬年末· 卡盤 探牌器 FJ FK 速度制器

卷末

移动速度和推力达到90%的时间 标准型

符号

LCM LCR

LCG

LCW LCX

STM STG STS · STI

STR2

UCA2 ULK* JSK/M2

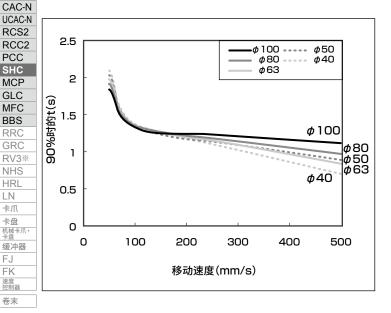
JSG JSC3 · JSC4 USSD UFCD USC UB JSB3 LMB LML **HCM** LBC CAC4 UCAC2

HRL

LN 卡爪 卡盘

FJ FΚ

速度 控制器 卷末


t:推力达到90%的时间(碰到物体后推力达到90%的时间)(s)

Si: 移动速度(mm/s)

f,f',f": 移动速度50、100、300mm/s时的时间(s)

SHC 供给压力O.5MPa时的计算公式

缸径 (mm)	移动速度50~100mm/s时 推力达到90%的时间计算公式(s) t=e(Si−50)+f (50≤Si≤100)	移动速度100mm/s以上时 推力达到90%的时间计算公式(s) t=e'(Si−100)+f' (100≪Si≪最大移动速度)	最大移动速度 (mm/s)
φ40	t=-0.0146(Si-50)+2.1	t=-0.00167(Si-100)+1.37	540
φ50	t=-0.013(Si-50)+2.05	t=-0.0013(Si-100)+1.4	520
φ63	t=-0.013(Si-50) + 1.93	t=-0.00125(Si-100)+1.35	510
φ80	t=-0.0118(Si-50)+1.93	t=-0.000934(Si-100)+1.34	480
φ100	t=-0.0104(Si-50)+1.85	t=-0.0005625(Si-100) + 1.33	450

此外,供给压力每上升0.1[MPa],推力达到90%的时间约延迟5~10%左右。供给压力每上升0.1[MPa],最大移动速度增加5%左右。

计算示例

使SHC-00-63H-300-20的气缸以压力0.5[MPa]、移动速度500[mm/s]动作时推力达到90%的时间。

根据上述计算公式,

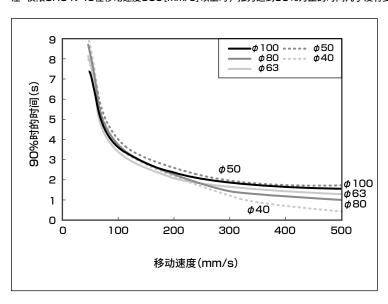
 $t=-0.00125 \times (500-100) + 1.35 = 0.85(s) \approx 0.8(s)$

压力为0.8[MPa]时,约0.1[MPa]变化5~10%左右, 因此t'=(1.15~1.3) t=0.98~1.1(s) ~ 1.0(s)

为大致标准。此外,2倍型的时间几乎不会因全行程的长度而异,但如下所示的K(4倍)型达到推力的时间则会因全行程的长度(全行程<300 和全行程≥300)而略有差异,因此函数式不同。增力行程10[mm]和20[mm]几乎没有时间变化。

技术资料

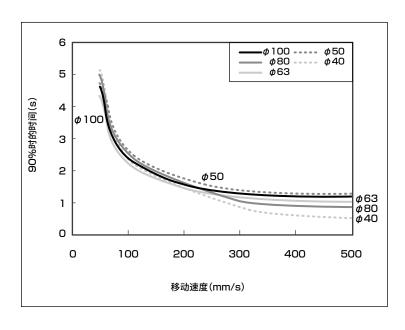
LCM LCR


LCG LCX STM

SHC-K 供给压力O.5MPa时的计算公式

・全行程<300mm时

缸径 (mm)	移动速度50~100mm/s 推力达到90%的时间计算公式(s) t=e(Si-50)+f (50≤Si≤100)	移动速度100~300mm/s 推力达到90%的时间计算公式(s) t=e'(Si−100)+f' (100≤Si≤最大移动速度)	移动速度300mm/s以上时 推力达到90%的时间计算公式(s) t=e"(Si−300)+f" (300≤S≤最大移动速度)	最大移动速度 (mm/s)
φ40 注	t=-0.094(Si-50) +8.7	t=-0.014(Si-100)+4	t=-0.0034(Si-300) + 1.2	540
φ50	t=-0.1 (Si-50) +8.9	t=-0.01 (Si-100) +3.9	t=-0.00078(Si-300)+1.9	520
φ63	t=-0.095(Si-50) +8.51	t=-0.009885(Si-100)+3.76	t=-0.0011(Si-300)+1.783	510
φ80	t=-0.0886(Si-50)+8	t=-0.0097(Si-100)+3.57	t=-0.00152(Si-300)+1.63	480
φ100	t=-0.081 (Si-50) +7.4	t=-0.0095(Si-100)+3.35	t=-0.002(Si-300) + 1.45	450


注 仅限SHC-K-40在移动速度500[mm/s]以上时,推力达到90%为止的时间几乎没有变化。

·全行程≥300mm时

缸径 (mm)	移动速度50~1 00mm/s 推力达到90%的时间计算公式(s) t=e(Si−50)+f (50≤Si≤100)	移动速度100~300mm/s 推力达到90%的时间计算公式(s) t=e'(Si−100)+f' (100≤Si≤最大移动速度)	移动速度300mm/s以上时 推力达到90%的时间计算公式(s) t=e"(Si−300)+f" (300≤Si≤最大移动速度)	最大移动速度 (mm/s)
φ40 注	t=-0.049(Si-50)+5.15	t=-0.00925(Si-100)+2.7	t=-0.0017(Si-300)+0.85	540
φ50	t=-0.051 (Si-50) +5.21	t=-0.0063(Si-100)+2.66	t=-0.00039(Si-300)+1.4	520
φ63	t=-0.0484(Si-50)+4.98	t=-0.0062(Si-100)+2.56	t=-0.000548(Si-300) + 1.32	510
φ80	t=-0.045 (Si-50) +4.68	t=-0.00612(Si-100)+2.43	t=-0.000765 (Si-300) + 1.206	480
φ100	t=-0.041 (Si-50) +4.33	t=-0.006(Si-100)+2.28	t=-0.001 (Si-300) + 1.08	450

注 仅限SHC-K-4O在移动速度500[mm/s]以上时,推力达到90%为止的时间几乎没有变化。

STG STR2 UCA2 ULK* JSK/M2 JSG JSC3 • JSC4 USSD UFCD USC UB JSB3 LMB LML HCM HCA LBC CAC4 UCAC2 CAC-N UCAC-N RCS2 RCC2 PCC SHC MCP GLC MFC BBS RRC GRC RV3% NHS HRL LN 卡爪 卡盘 机械卡爪 卡盘 缓冲器 FJ FK 速度 控制器 卷末

增力部单独控制型

增力气缸部单独进行往复动作,因此达到推力的时间会因供给压力而异。此外,达到推力的时间仅为增力气缸部的时间。

t:推力达到90%的时间(碰到物体后推力达到90%的时间)(s)

P:压力(MPa)

H:推力达到90%的时间系数(s)

SHC-A

LCM LCR

LCG LCW LCX

STM STG

STS · STI STR2

UCA2 ULK* JSK/M2

JSG JSC3+JSC4 USSD UFCD USC UB JSB3 LMB LML **HCM** LBC

PCC

GLC

MFC

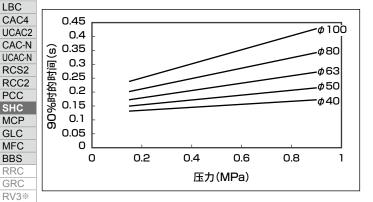
BBS RRC

GRC

NHS

HRL LN

卡爪


卡盘

缓冲器

FJ FΚ 速度 控制器

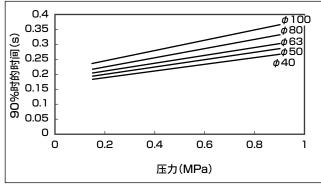
卷末

缸径 (mm)	推力90%时的时间计算公式 (s)t=GP+H (0.15≤P≤0.9[MPa])
φ40	t=0.05P+0.123
φ50	t=0.0826P+0.135
φ63	t=0.125P+0.1525
φ80	t=0.18P+0.174
φ100	t=0.245P+0.2

•计算示例

使SHC-00-63H-300-20-A的气缸以压力0.5[MPa]动作时推力达到90%的时间。

根据上述计算公式,

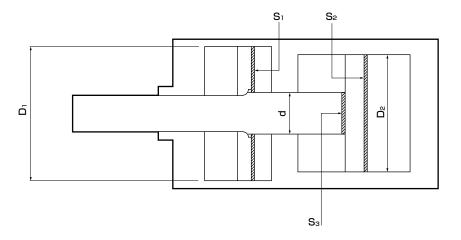

 $t=0.125\times0.5+0.1525=0.215(s)\approx0.2(s)$

增力行程10[mm]和20[mm]几乎没有时间变化。

以下所示型号也采用同样的计算方法。

SHC-K-A

缸径 (mm)	推力达到90%的时间计算公式(s) t=GP+H (0.15冬P冬0.9[MPa])
φ40	t=0.11P+0.165
φ50	t=0.121P+0.172
φ63	t=0.135P+0.181
φ80	t=0.153P+0.193
φ100	t=0.175P+0.2075



技术资料

LCM LCR

LCG

理论推力计算公式 SHC 受压面积表

SHC

缸径(mm)	S ₁ [cm ²]	S ₂ [cm ²]	S ₃ [cm ²]	D ₁ [mm]	D ₂ [mm]	d[mm]
φ40	13.4	12.5	6.15	φ50	φ40	φ28
φ50	23.1	19.6	8.04	φ63	φ50	φ32
φ63	31.6	31.1	12.5	φ75	φ63	φ40
φ80	43.9	50.2	19.6	φ90	φ80	φ50
φ100	66.7	78.5	28.2	φ110	φ100	φ60

SHC-K

缸径(mm)	S ₁ [cm ²]	S ₂ [cm ²]	S ₃ [cm ²]	D ₁ [mm]	D ₂ [mm]	d[mm]
φ40	44.1	12.5	6.15	φ80	φ40	φ28
φ50	70.4	19.6	8.04	φ100	φ50	φ32
φ63	110.1	31.1	12.5	φ125	φ63	φ40
φ80	181.4	50.2	19.6	φ160	φ80	φ50
φ100	285.8	78.5	28.2	φ200	φ100	φ60

$$S_1 = \frac{\pi}{4} (D_1^2 - d^2)$$
 $S_2 = \frac{\pi}{4} D_2^2$ $S_3 = \frac{\pi}{4} d^2$

计算公式

理论推力 = 低推力部(增力部)有效截面积 * 气压

例如,使 ϕ 63的气缸以压力0.5[MPa]动作时的理论推力。

- ・伸出时推力部的理论推力 $F=S_2P=31.1(cm^2)\times10^4\times0.5(MPa)\times10^6=1558(N)$
- ・伸出时增力部的理论推力 $F=(S_1+S_2)\,P=(31.6+31.1)\,(cm^2)\times 10^{-4}\times 0.5\,(MPa)\times 10^6=3139\,(N)$
- ・缩回时推力部的理论推力 $F=(S_2-S_3)\,P=(31.1-12.5)\,(cm^2)\times 10^{-4}\times 0.5\,(MPa)\times 10^6=930\,(N)$
- ・缩回时增力部的理论推力 $F=\{S_1+(S_2-S_3)\}\ P=\{31.6+(31.1-12.5)\}\ (cm^2)\times 10^4\times 0.5\ (MPa)\times 10^6=2511\ (N)$

小数点以下四舍五入。

LCW LCX STM STG STS · ST STR2 UCA2 ULK* JSK/M2 **JSG** JSC3+JSC4 USSD UFCD USC UB JSB3 LMB LML HCM HCA LBC CAC4 UCAC2 CAC-N UCAC-N RCS2 RCC2 PCC SHC MCP GLC MFC **BBS** RRC RV3% NHS HRL LN 卡爪 卡盘 缓冲器 FJ FΚ 速度 控制器

卷末

LCR

LCG LCW LCX STM

STR2

UCA2 ULK* JSK/M2

JSG

JSC3 • JSC4

USSD

UFCD

USC UB

LMB I MI

HCM

LBC CAC4

UCAC2

CAC-N

UCAC-N

RCS2

RCC2 PCC

SHC

MCP GLC

MFC BBS

RRC

GRC

RV3%

NHS

HRL

LN

卡爪

卡盘

缓冲器

速度 控制器

卷末

FJ FK 气动元件

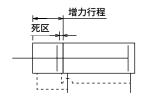
为了安全地使用本产品

使用前请务必阅读。

关于气缸常规内容请在卷头73确认,关于气缸开关请在卷头80确认。

个别注意事项:倍力气缸SHC系列

设计•选型时


▲警告

■ 关于中间停止

从产品结构而言,请勿用于中间停止。否则停止位置会非常 不稳定。

▲注意

- 请在最大行程内使用。
- 请勿通过增力部单独控制使用ABR连接型电磁阀。 增力部气缸后退时,气缸内部的B气口会与D气口的通路连接,因此会通过电磁阀的R气口排气。
- **增力部行程请在超过下图死区的位置中使用。** 在死区行程中使用时,增力部将无法产生推力。

请参阅第1144页和第1154页的增力行程死区尺寸。

- 请在增力部单独控制回路中使用各单体电磁阀。 此外,组装至集成中使用时,请使用单独排气隔板。 否则,增力气口的排气迂回至移动气口会导致动作不良。
- 增力部单独控制回路中,移动行程端请留出O.1秒 以上的延时。

对A气口和C气口同时加压时,增力活塞和连接轴环将无法顺利接合,从而会导致动作不良。动作时,对A气口加压后,在移动行程端中请留出O.1秒以上的延时后再对C气口加压。

■ 增力部单独控制回路中,请勿对B气口侧和C、D气口侧设置供给压力差。

否则,由于产品结构关系,会产生空气迂回,从而导致动作 不良。设置压力差时请与本公司协商。

■ 请考虑气缸接合时的冲击进行选型。

由于产品结构关系,增力活塞和连接轴环接合时会产生冲击, 因此请采用考虑冲击的装置设计。冲击值因使用条件而异, 因此请与本公司协商。

通 径	冲 击 值(m/s²)
φ40	147
φ50	147
φ63	147
φ80	196
φ100	196

■ 增力前进时的推力和增力后退时的推力不同,敬请 注意。

增力部后退开始时会变为相当于2倍和4倍的推力,但由于产品结构关系,动作过程中的推力为理论推力的70%左右。此外,在死区行程中后退时与前进时一样,也无法实现增力推力,敬请注意。

■ 请勿对活塞杆施加单侧负荷。

否则,由于产品结构关系,增力活塞和连接轴环将无法顺利接合,从而导致动作不良。请勿设置导轨、浮动接头等施加单侧负荷。

■ 请在气缸上安装调速阀。

超过各气缸的使用活塞速度进行使用时,将无法顺利接合, 从而导致动作不良。

此外,负荷率较大时,在惯性作用下可能会行进至增力行程 终点而碰到工件,因此请与本公司协商。

■ 请勿同步使用多个气缸。

否则,增力活塞和连接轴环将无法顺利接合,从而会导致动 作不良。

- 气缸解除接合时,活塞杆会略有回弹,敬请注意。
- 移动行程途中,请勿对活塞杆施加反作用力。

否则,由于产品结构关系,增力活塞和连接轴环将无法接合, 从而会导致动作不良。

■ 活塞杆向下使用时,前端负荷重量对于供给压力应 留有充分余量。

前端负荷重量对于供给压力过重时,将无法解除连接,从而会导致动作不良。使用的前端负荷重量建议为推力部Pull时使用压力-0.25MPa的理论推力以下。