RRC

RV3* NHS

HRL

LN

卡爪

卡盘 机械卡爪· 卡盘

缓冲器 FJ 速度 控制器

卷末

STEP-1

确认负荷率后确定缸径。

 $\alpha = \frac{\mathsf{F0}}{\mathsf{F}} \times 100[\%]$

α : 负荷率

Fo:移动工件所需的力(N)

F:气缸理论推力(N)

[表1]

水平动作时	垂直动作时
Fo = Fw	$F_0 = W + FW$

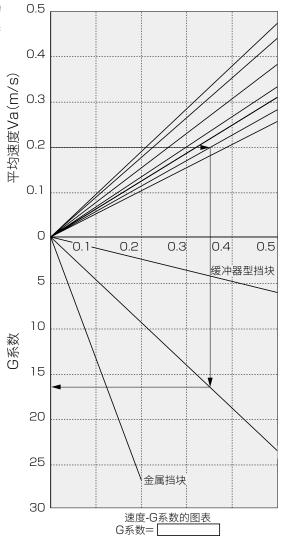
FW: W×0.2注(N) W:负荷(N)

注:摩擦系数

[表1]理论推力表

(单位:N)

缸径	动作方向	使用压力MPa							
山上7工	ANI F/J IEI	0.15	0.2	0.3	0.4	0.5	0.6	0.7	
相当于	伸出	74	99	148	197	246	296	345	
	缩回	57	76	114	152	190	228	266	
相当于φ32	伸出	116	155	233	310	388	466	543	
	缩回	99	133	199	265	332	398	464	


[表2]负荷率的参考标准

使用压力MPa	负荷率(%)
0.2~0.3	α≤40
0.3~0.6	<i>α</i> ≤50
0.6~0.7	α≤60

STEP-2

计算行程末端速度(Vm)和G系数。

通过平均速度(Va)和在STEP-1中计算出的 负荷率,来计算行程末端速度(Vm)和G系

负荷率 5% 负荷率10%

负荷率20% 负荷率30% 负荷率40% 负荷率50% 负荷率60%

行程末端速度Vm

图中的箭头(→)表示 平均速度: 0.20m/s 负荷率 : 50%

下的

行程末端速度: 0.35m/s

G系数 : 16.8 的计算示例。

标准型橡胶缓冲型挡块

STEP-3

确认允许吸收能量。

E : 工件末端的动能(J)

 $E = \frac{1}{2} \times (m + m_{\alpha}) \times Vm^{2}$

m : 负荷的重量(kg)(m ≈ W(N) / Q R

mα : 滑台的重量(根据表4)Vm : 行程末端速度(m/s)

确认E ≤ E max。

E max: Eo的最大允许值(根据表3)

[表3] LCX的允许吸收能量(Eo)

缸径	标准型 (J)	橡胶缓冲型挡块 (し)	金属挡块 (J)	缓冲器型挡块 (J)				
φ25	0.34	0.14	0.07	1.3				
φ32	0.34	0.14	0.07	1.3				

[表4]滑台重量

(单位:kg) USSD

LCM

LCR LCG

LCX

STM

STG

STS+STL STR2

UCA2

ULK* JSK/M2

JSG JSC3+JSC

UFCD USC

CAC4 UCAC2

CAC-N UCAC-N

RCS2 RCC2 PCC SHC

MCP GLC MFC BBS RRC GRC RV3*

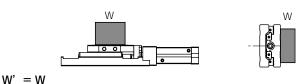
NHS HRL LN

卡爪 卡盘

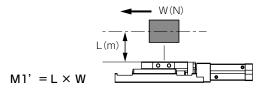
缓冲器 FJ FK

速度 控制器

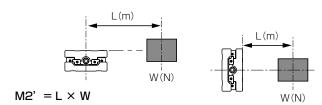
UB
JSB3
LMB
LML
HCM
HCA
LBC

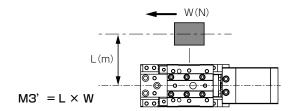

生てくス	行程(mm)				
11111111111111111111111111111111111111	10 20 30	40 50 75 100 125 150			
φ25	0.030	0.035			
φ32	0.030	0.035			

STEP-4


确认静止时的力矩的合成M'T。

计算行程末端产生的静态负荷(力矩)及冲击力矩,确认静止时的力矩的合成M'T。


● 垂直负荷: W'(N)


● 弯曲力矩:M1'(N·m)

● 横向弯曲力矩: M2'(N·m)

● 扭转力矩: M3'(N·m)

W' = (N)

M1' × G = (N·m)

M2' = $(N \cdot m)$ M3' × G = $(N \cdot m)$

 $M' T = \frac{W'}{W' max} + \frac{M1' \times G}{M1' max} + \frac{M2'}{M2' max} + \frac{M3' \times G}{M3' max} = \boxed{ }$

M'T: 力矩的合成

G : G系数

W' max : W'的最大允许值(根据表5)

M1'max: M1'的最大允许值(根据表5)

M2'max: M2'的最大允许值(根据表5)

M3' max: M3'的最大允许值(根据表5)

[表5]静止负荷允许值

缸径	行程	垂直负荷 W'max(N)	弯曲力矩 M1'max(N·m)	横向弯曲力矩 M2'max(N·m)	扭转力矩 M3'max(N·m)
φ25	10、20、30、	670	52	110	52
φ32	40、50	0,0	02	. 10	JE.
φ25	75、100、	970	128	116	128
φ32	125、150	970	120	110	120

确认M' T≤1。

LBC CAC4 UCAC2

CAC-N

UCAC-N RCS2

RCC2

PCC SHC

MCP

GLC MFC BBS RRC

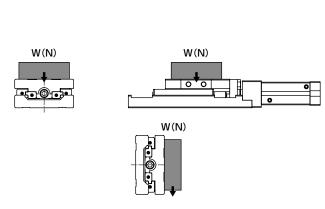
RV3%

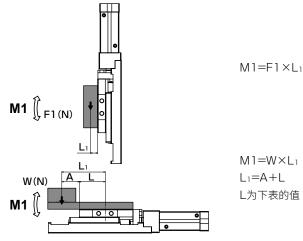
NHS

HRL LN 卡爪

卡盘 机械卡爪 卡盘

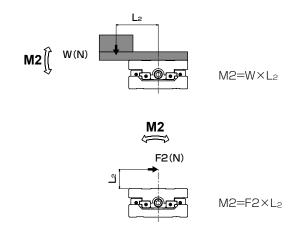
缓冲器 FJ FΚ

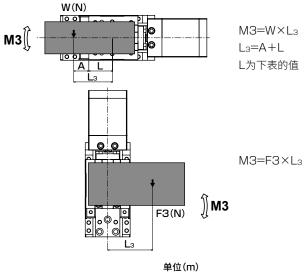

速度 控制器 卷末


STEP-5

确认移动时的力矩的合成MT。(与STEP-4中的计算结果不同,请务必引起注意。)

● 垂直负荷:W(N)


● 弯曲力矩: M1(N·m)



)横向弯曲力矩:M2(N・m)

扭转力矩: M3(N·m)

M3max: M3的最大允许值(根据表7)

L值(滑台末端至轴承部中心的距离)

红汉	紅径								
11.1元	10	20	30	40	50	75	100	125	150
φ25	0.027		0.042		0.0535				
φ32	0.037		0.0) '			JJJ		

W=W (N) Мτ :力矩的合成

Wmax : W的最大允许值(根据表7) M1=M1(N·m) M1max:M1的最大允许值(根据表7) M2=M2 (N·m)

M2max: M2的最大允许值(根据表7) мз=мз (N·m)

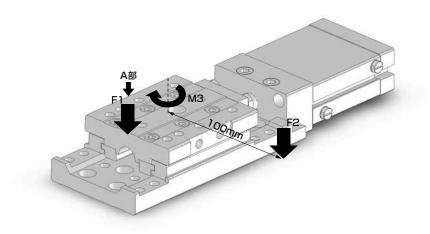
М1 M2 МЗ Wmax M1max M2max M3max

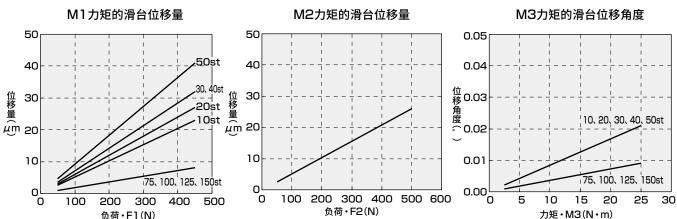
[表7]移动负荷允许值

缸径	行程	垂直负荷 Wmax(N)	弯曲力矩 M1max(N·m)	横向弯曲力矩 M2max(N·m)	扭转力矩 M3max(N·m)
φ25	10、20、30、	97	7	15	7
φ32	40、50	97	,	15	
φ25	75、100、	130	17	16.5	17
φ32	125、150	130	17	16.5	17

MT≤1时可以使用。

技术资料滑台末端处的位移(参考值)


A点处的位移


【M1、M2、M3力矩导致的滑台位移量】

M1力矩:滑台前端承受负荷(F1)时,滑台前端的位移量

M2力矩:在离开气缸中心100mm的位置承受负荷(F2)时,滑台末端(A部)的位移量

M3力矩:对气缸施加旋转力矩(M3)时,滑台的位移角度

LCM LCR LCG LCW LCX STM STG STS · STL STR2 UCA2 ULK* JSK/M2 JSG JSC3 • JSC4 USSD UFCD USC UB JSB3 LMB LML HCM HCA LBC CAC4 UCAC2 CAC-N UCAC-N RCS2 RCC2 PCC SHC MCP GLC MFC BBS RRC RV3% NHS HRL LN 卡爪 卡盘 缓冲器

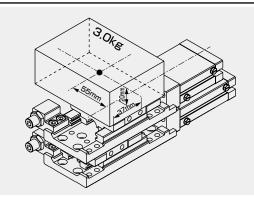
> FJ FK 速度 控制器 卷末

CAC-N UCAC-N

RCS2

RCC2

PCC


SHC MCP GLC

LN

卡爪

FJ

选型指南:选型示例①

〈动作条件〉

使用机种(上侧): LCX-25-30-M6(产品重量: 1,270(g))

(下侧): LCX-32-30-S6(产品重量: 1,440(g))

压力: 0.5(MPa) 工件重量: 3.0(kg) 动作方向:水平

平均速度(上侧): 100(mm/s)

(下侧): 230(mm/s)

工件形状:左图

负荷率的确认与缸径的确定(详细计算方法,请参阅第298页)

计算公式

 $\alpha = \frac{F^0}{F} \times 100[\%]$

α:负荷率

Fo: 移动工件所需的力(N)

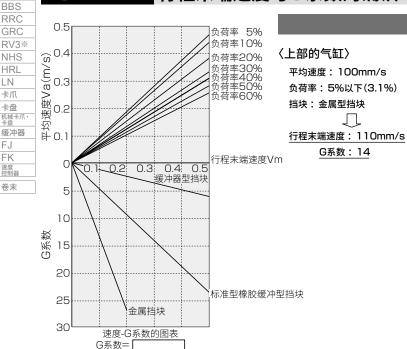
F : 气缸理论推力(N)

选型示例

〈上部的气缸〉

$$\alpha 1 = \frac{(3.0 \times 9.8) \times 0.2}{190} \times 100$$
$$= 3.1\%$$

Л


〈下部的气缸〉

 $\alpha 2 = \frac{\{(3.0 + 1.27 + 0.01) \times 9.8\} \times 0.2}{(3.0 + 1.27 + 0.01) \times 9.8} \times 0.2$

× 100 = 2.5%

负荷率的参考标准为O.5MPa时 " α \leq 50",因此可以使用

行程末端速度与G系数的确认 (详细计算方法,请参阅第298页)

选型示例

〈下部的气缸〉

平均速度: 230mm/s 负荷率:5%以下(2.5%) 挡块:橡胶缓冲型挡块

 \int

行程末端速度:240mm/s G系数: 12

允许吸收能量的确认(详细计算方法,请参阅第299页)

计算公式

 $\frac{1}{2} \times (m+m_{\alpha}) \times Vm^{2}$ Ε :工件末端的动能(J) : 负荷的重量(kg) m :滑台的重量(kg) mα : 行程末端速度(m/s)

选型示例

〈上部的气缸〉

 $E = \frac{1}{2} \times (3.0 + 0.03) \times 0.11^{2}$

〈下部的气缸〉

 $E = \frac{1}{2} \times (3.0 + 1.27 + 0.01 + 0.035)$ \times 0.24² = 0.124(J)

橡胶缓冲型挡块的允许吸收能量为"O.14J",因

= 0.02(J)

此可以使用

金属型挡块的允许吸收能量为"O.O7J",因此可 以使用

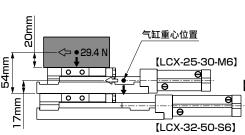
ST=P-4 静止允许负荷的确认 (详细计算方法, 请参阅第299页)

计算公式

●垂直负荷 W' = W

● 弯曲力矩:M1'(N・m)

M1' = $L_1 \times W$ ● 横向弯曲力矩: M2'(N・m)


 $M2' = L2 \times W$

▶ 扭转力矩:M3'(N·m)

 $M3' = L3 \times W$

◎ 力矩的合成

$$M' T = \frac{W'}{W' \text{ max}} + \frac{M1' \times G}{M1' \text{ max}} + \frac{M2'}{M2' \text{ max}} + \frac{M3' \times G}{M3' \text{ max}}$$
 【上侧的气缸作用时的力矩的合成】

选型示例

【负荷・力矩的计算】

〈上部的气缸〉

 $W' = 3.0 \times 9.8 = 29.4(N)$

M1' = $0.02 \times 29.4 = 0.6(N \cdot m)$

 $M2' = 0.055 \times 29.4 = 1.6(N \cdot m)$

 $M3' = 0.055 \times 29.4 = 1.6(N \cdot m)$

〈下部的气缸〉

 $W' = 3.0 \times 9.8 + 1.27 \times 9.8$

=41.8(N)

 $M1' = 0.054 \times 29.4$

+ 0.017 × 1.27 × 9.8

 $= 1.8(N \cdot m)$

(上侧的气缸不作为冲击力矩作用时,不加下划线部分)

 $M2' = 0.055 \times 29.4 = 1.6(N \cdot m)$

 $M3' = 0.055 \times 29.4 = 1.6(N \cdot m)$

行程末端速度: 110mm/s G系数: 14

〈上部的气缸〉

M'
$$\tau = \frac{29.4}{670} + \frac{0.6 \times 14}{52} + \frac{1.6}{110} + \frac{1.6 \times 14}{52}$$

= 0.7

力矩的合成(M'⊤)为"1以下",因此可以使用

〈下部的气缸〉

$$M' T = \frac{41.8}{670} + \frac{1.6 \times 14}{52} + \frac{1.6}{110} + \frac{1.6 \times 14}{52}$$
$$= 1.0$$

力矩的合成(M'⊤)为"1以下",因此可以使用

【下侧的气缸作用时的力矩的合成】

- 行程末端速度:240mm/s G系数:12

〈上部的气缸〉

= 0.6

$$M^{\cdot} \ \tau = \frac{29.4}{670} + \frac{0.6 \times 12}{52} + \frac{1.6}{110} + \frac{1.6 \times 12}{52}$$

力矩的合成(M'T)为"1以下",因此可以使用

〈下部的气缸〉

$$M' \tau = \frac{41.8}{670} + \frac{1.8 \times 12}{52} + \frac{1.6}{110} + \frac{1.6 \times 12}{52}$$

= 0.9

力矩的合成(M[/]T)为"1以下",因此可以使用

STIEP-5 移动允许负荷的确认(详细计算方法,请参阅第300页)

计算公式

垂直负荷 W = W

・ 弯曲力矩:M1(N・m)

 $M1 = L1 \times W$

● 横向弯曲力矩: M2(N・m)

 $M2 = L2 \times W$

■ 扭转力矩: M3(N·m)

 $M3 = L3 \times W$

◎ 力矩的合成

$$MT = \frac{W}{Wmax} + \frac{M1}{M1max} + \frac{M2}{M2max} + \frac{M3}{M3max}$$

选型示例

〈上部的气缸〉

 $W = 3.0 \times 9.8 = 29.4(N)$

 $M1 = O(N \cdot m)$

 $M2 = 0.055 \times 29.4 = 1.6(N \cdot m)$

 $M3 = O(N \cdot m)$

$$MT = \frac{29.4}{97} + \frac{0}{7} + \frac{1.6}{15} + \frac{0}{7}$$

= 0.4

力矩的合成(M'⊤)为"1以下",因此可以使用

〈下部的气缸〉

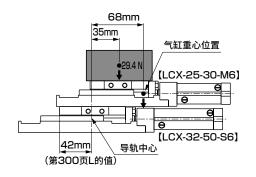
 $W = 3.0 \times 9.8 + 1.27 \times 9.8$

= 418(N)

 $M1 = 0.035 \times 29.4 + 0.068 \times 1.27 \times 9.8$

 $= 1.9(N \cdot m)$

(上侧的气缸作为力矩作用,因此需加上。气缸重心以外形尺


寸的中心为重心进行计算)

 $M2 = 0.055 \times 29.4 = 1.6(N \cdot m)$

 $M3 = O(N \cdot m)$

$$M_T = \frac{41.8}{97} + \frac{1.9}{7} + \frac{1.6}{15} + \frac{0}{7}$$

力矩的合成(M'⊤)为"1以下",因此可以使用

303

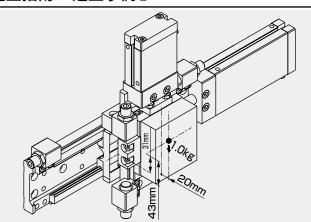
LCG **LCW** LCX STM STG STS · STI STR2 UCA2 ULK*

LCM LCR

JSK/M2 JSG JSC3+JSC USSD **UFCD** USC

UB JSB3 LMB I MI **HCM** HCA LBC CAC4 UCAC₂

CAC-N UCAC-N RCS2 RCC2 PCC SHC MCP MEC


BBS RRC GRC RV3 NHS HRL LN 卡爪 卡母

缓冲器 FJ FΚ 速度 控制器

速度 控制器

卷末

选型指南:选型示例②

〈动作条件〉

使用机种(X轴): LCX-32-150-A6(产品重量: 2,450(g))

(Z轴): LCX-32-30-S6(产品重量: 1,440(g))

压力: 0.5(MPa) 工件重量: 1.0(kg) 动作方向:水平+垂直

平均速度(X轴): 300(mm/s)

(Z轴):50(mm/s)

工件形状:左图

负荷率的确认与缸径的确定(详细计算方法,请参阅第298页)

计算公式

 $\alpha = \frac{\mathsf{F}^0}{\mathsf{F}} \times 100[\%]$

α:负荷率

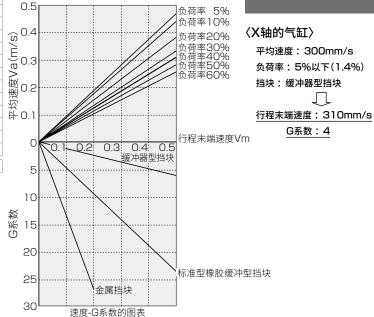
Fo:移动工件所需的力(N)

F: 气缸理论推力(N)

选型示例

〈X轴的气缸〉 〈Z轴的气缸〉

 $\alpha 1 = \frac{\{(1.0 + 1.29 + 0.01) \times 9.8\} \times 0.2}{\{(1.0 + 1.29 + 0.01) \times 9.8\} \times 0.2}$ 332 \times 100 = 1.4%


 $\alpha 2 = \frac{(1.0 \times 9.8) + 0.2 \times (1.0 \times 9.8)}{200} \times 100 = 3.5\%$ 332

负荷率的参考标准为O.5MPa时 " α ≤ 50",因此可以使用

行程末端速度与G系数的确认 (详细计算方法,请参阅第298页)

 \int

G系数: 4

〈Z轴的气缸〉

选型示例

平均速度: 50mm/s 负荷率:5%以下(3.5%) 挡块:橡胶缓冲型挡块 Л

行程末端速度:55mm/s G系数:3

允许吸收能量的确认(详细计算方法,请参阅第299页)

计算公式

 $\frac{1}{2} \times (m+m_{\alpha}) \times Vm^{2}$ Ε :工件末端的动能(J) : 负荷的重量(kg) m :滑台的重量(kg) mα : 行程末端速度(m/s)

G系数= □

选型示例

〈X轴的气缸〉 〈Z轴的气缸〉

 $E = \frac{1}{2} \times (1.0 + 1.29 + 0.01 + 0.035)$ $E = \frac{1}{2} \times (1.0 + 0.035) \times 0.055^2$ $\times 0.31^2 = 0.11(J)$ = 0.002(J)

缓冲型挡块的允许吸收能量为"1.3J",因此可以 橡胶缓冲型挡块的允许吸收能量为"0.14J",因

此可以使用

LCM

LCR LCG

LCW LCX

STM

STG

STS · STI

STR2

UCA₂

ULK*

JSK/M2

JSC3+JSC

USSD

UFCD

USC

JSB3

LMB I MI

HCM

HCA LBC

CAC4

UCAC2

UCAC-N

RCS2

PCC SHC

MCP

MEC

RRC

RV3

NHS HRL

卡爪 卡盘 缓冲器

FJ FΚ 速度 控制器

卷末

UB

JSG

STEP-4 静止允许负荷的确认 (详细计算方法, 请参阅第299页)

计算公式

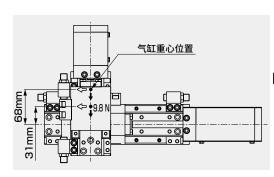
● 垂直负荷 W' = W

● 弯曲力矩:M1'(N・m)

 $M1' = L1 \times W$

● 横向弯曲力矩: M2'(N・m)

 $M2' = L2 \times W$


● 扭转力矩: M3'(N・m)

M3' = L3 \times W

◎ 力矩的合成

$$M' \ \ \tau = \frac{W'}{W' \, max} + \frac{M1' \ \times G}{M1' \, max} + \frac{M2'}{M2' \, max} + \frac{M3' \ \times G}{M3' \, max}$$

注)交叉单元在M2方向的冲击力矩作用时存在。 请根据使用条件,将G系数乘以M2'的值。

选型示例

【负荷•力矩的计算】

〈X轴的气缸〉

〈Z轴的气缸〉

 $W' = 1.0 \times 9.8 + 1.44 \times 9.8 = 23.9(N)$ W' = O(N)

 $M1' = 0.054 \times 9.8 + 0.017 \times 1.44 \times 9.8$ $M1' = 0.02 \times 9.8 = 0.2 (N \cdot m)$

 $M2' = 0.02 \times 9.8 = 0.2(N \cdot m)$ $M3' = 0.001 \times 9.8 = 0.01 (N \cdot m)$

(Z轴的气缸也作为力矩作用,因此需加上) $M2' = 0.054 \times 9.8 + 0.017 \times 1.44 \times 9.8$

 $M3' = 0.031 \times 9.8 + 0.068 \times 1.44 \times 9.8$

 $= 1.3(N \cdot m)$

【X轴的气缸作用时的力矩的合成】

行程末端速度: 310mm/s G系数: 4

〈X轴的气缸〉

$$M' \tau = \frac{23.9}{970} + \frac{0.8 \times 4}{128} + \frac{0.8}{116} + \frac{1.3 \times 4}{128}$$

力矩的合成(M'⊤)为"1以下",因此可以使用

〈Z轴的气缸〉

M'
$$\tau = \frac{0}{670} + \frac{0.2}{52} + \frac{0.2 \times 4}{110} + \frac{0.01 \times 4}{52}$$

= 0.01

(由于X轴的气缸动作,对Z轴气缸在M2方向作用的冲击力 矩需乘以G系数)

力矩的合成(M'τ)为"1以下",因此可以使用

【Z轴的气缸作用时的力矩的合成】

行程末端速度:55mm/s G系数:3

〈X轴的气缸〉

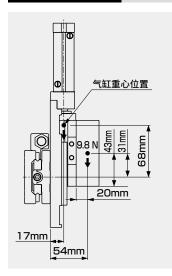
= 0.04

〈Z轴的气缸〉

0

128

$$M' \tau = \frac{0}{670} + \frac{0.2 \times 3}{52} + \frac{0}{110} + \frac{0}{52}$$
$$= 0.01$$


(由于Z轴的气缸动作,对X轴气缸在M2方向作用的冲击力矩需乘以 力矩的合成(M'т)为"1以下",因此可以使用

116

力矩的合成(M'τ)为"1以下",因此可以使用

 $M' \tau = \frac{23.9}{970} + \frac{0}{128} + \frac{0.5 \times 3 + 0.2}{116} +$

■移动允许负荷的确认 (详细计算方法,请参阅第300页)

计算公式

▶ 垂直负荷

W = W

● 弯曲力矩: M1(N・m)

 $M1 = L1 \times W$

▶ 横向弯曲力矩:M2(N·m)

 $M2 = L2 \times W$

● 扭转力矩: M3(N·m)

 $M3 = L3 \times W$

◎ 力矩的合成

$$M_T = \frac{W}{Wmax} + \frac{M1}{M1max} + \frac{M2}{M2max} + \frac{M3}{M3max} \langle Z轴的气缸 \rangle$$

选型示例

〈X轴的气缸〉

 $W = 1.0 \times 9.8 + 1.44 \times 9.8$

= 23.9(N)

 $M1 = O(N \cdot m)$

 $M2 = 0.054 \times 9.8 + 0.017 \times 1.44 \times 9.8$

 $= 0.8(N \cdot m)$

 $M3 = O(N \cdot m)$

$$M_T = \frac{23.9}{130} + \frac{0}{17} + \frac{0.8}{16.5} + \frac{0}{17}$$

力矩的合成(M'τ)为"1以下",因此可以使用

W = O(N)

 $M1 = 0.02 \times 9.8 = 0.2(N \cdot m)$

 $M2 = O(N \cdot m)$

 $M3 = O(N \cdot m)$

$$M_T = \frac{0}{97} + \frac{0.2}{7} + \frac{0}{15} + \frac{0}{7} = 0.03$$

力矩的合成(M'⊤)为"1以下",因此可以使用