STG-K Series

LCM LCR LCG LCW LCX STM STG STS · STL STR2 UCA2

ULK* JSK/M2 JSG

JSC3 • JSC4 USSD UFCD USC

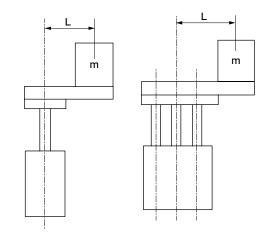
UB JSB3 LMB LML **HCM** HCA LBC CAC4 UCAC2 CAC-N UCAC-N RCS2 RCC2 PCC SHC MCP

GLC MFC BBS RRC GRC RV3% NHS HRL LN 卡爪 卡盘 机械卡爪 卡盘

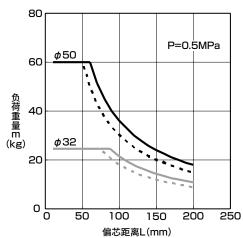
缓冲器

FJ

FK 速度 控制器

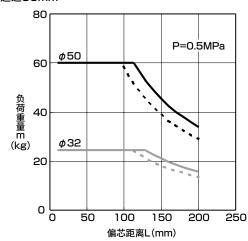

卷末

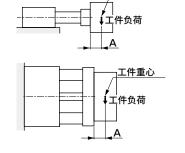
选型指南


垂直安装时

● 选型时,请确保负荷总重量相对于理论推力的负 荷率为下表值以下。

项目	与理论推力对应的
缸径(mm)	负荷率
φ32	60%以下
φ50	60%以下

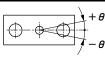

● 行程50mm以下


注1:低速时,请将虚线范围作为参考标准。

工件重心

● 行程超过50mm

允许横向负荷


允许横向负荷值为负荷作用于端板端面时的值。 安装在端板上的工件的重心偏移时,请将偏移 量置换为行程以进行选型。

400 Ø50C 300 允许负荷(N) Ø32(~50) 200 Ø32(51~) 100 ٥٥ 50 100 150 200 250 "行程+A" (mm)

单位:N·m

允许旋转扭矩	
扭矩:T(N·m)	
(

		++-	-
ßĖ	п	7525	ш
127.			

项目	行程(mm)							
缸径(mm)	25	50	75	100	125	150	175	200
φ32	8.0	6.3	6.6	5.7	5.1	4.5	4.1	3.7
φ50	15	12	17	15	13	12	11	10

项目	 			
缸径(mm)	防回转精度 <i>8</i> (度)			
φ32	±0.05			
φ50	±0.05			

LCM

LCR LCG

LCW LCX STM STG

STS · STL STR2

UCA2

ULK* JSK/M2

JSC3+JSC4

USSD

UFCD USC

UB

JSB3

LMB LML

HCM HCA

LBC

CAC4

UCAC2

CAC-N UCAC-N

RCS2 RCC2 PCC SHC MCP MFC BBS

RRC

RV3%

NHS

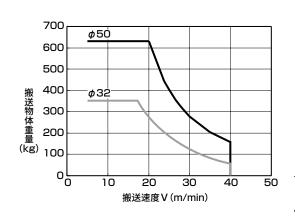
HRL

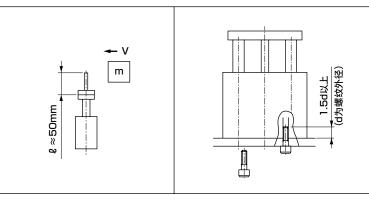
LN

卡爪

卡盘

缓冲器


FJ


FΚ 速度 控制器

卷末

■ 作为挡块使用时的使用范围

选型指南

▲ 使用注意事项

注1:用作挡块时,请选择行程50以下的机种。 注2:请将挡块部的全长控制在 ℓ =50mm以下。

注3: 固定气缸缸体时,请将螺栓的拧入深度控制在1.5d以上,并采取防松动(粘结剂、弹簧

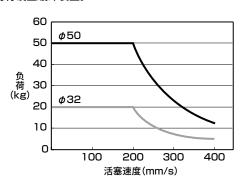
垫圈等)措施。

■ 可动部重量表

■ り切印主里1	X							甲位:Kg
项目		行程						
缸径(mm)	25	50	75	100	125	150	175	200
φ32	1.62	1.85	2.24	2.47	2.71	2.94	3.17	3.40
φ50	2.71	3.05	3.66	4.00	4.34	4.68	5.01	5.35

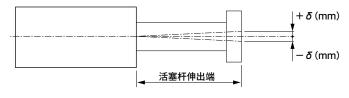
■ 允许吸收能量的计算

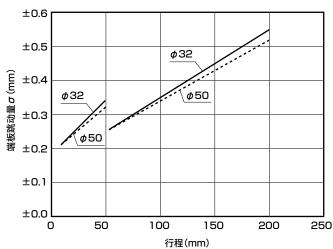
计算实际使用的负荷的动能,确认能否通过气缸的允许吸收能量 加以吸收。


- 气缸所具备的允许吸收能量(E)使用右侧图表中的值。
- 负荷的动能计算公式

$$E = \frac{1}{2} \times (W1 + W2) \times V^2$$

W2: 气缸的可动部重量(kg) W1:负荷重量(kg) V: 气缸速度(m/s)


■ 允许吸收能量值


请在曲线左下侧的范围内使用。在右上侧的范围内使用时,请在 外部另行设置缓冲装置。

■ 跳动精度

无负荷时端板前端产生的跳动量 σ 以下列图表的值为参考标准。 (导杆的挠曲量除外)

